
Deemon: Detecting CSRF with Dynamic Analysis and Property
Graphs

Giancarlo Pellegrino
CISPA, Saarland University

Saarland Informatics Campus
gpellegrino@cispa.saarland

Martin Johns
SAP SE

martin.johns@sap.com

Simon Koch
CISPA, Saarland University

Saarland Informatics Campus
s9sikoch@stud.uni-saarland.de

Michael Backes
CISPA, Saarland University

Saarland Informatics Campus
backes@cispa.saarland

Christian Rossow
CISPA, Saarland University

Saarland Informatics Campus
rossow@cispa.saarland

ABSTRACT
Cross-Site Request Forgery (CSRF) vulnerabilities are a severe class
of web vulnerabilities that have received only marginal attention
from the research and security testing communities. While much
e�ort has been spent on countermeasures and detection of XSS and
SQLi, to date, the detection of CSRF vulnerabilities is still performed
predominantly manually.

In this paper, we present Deemon, to the best of our knowledge the
�rst automated security testing framework to discover CSRF vulner-
abilities. Our approach is based on a new modeling paradigm which
captures multiple aspects of web applications, including execution
traces, data �ows, and architecture tiers in a uni�ed, comprehensive
property graph. We present the paradigm and show how a concrete
model can be built automatically using dynamic traces. Then, using
graph traversals, we mine for potentially vulnerable operations.
Using the information captured in the model, our approach then
automatically creates and conducts security tests, to practically
validate the found CSRF issues. We evaluate the e�ectiveness of
Deemon with 10 popular open source web applications. Our experi-
ments uncovered 14 previously unknown CSRF vulnerabilities that
can be exploited, for instance, to take over user accounts or entire
websites.

1 INTRODUCTION
No other vulnerability class illustrates the fundamental �aws of
the web platform better than Cross-Site Request Forgery (CSRF):
Even a brief visit to an untrusted website can cause the victim’s
browser to perform authenticated, security-sensitive operations
at an unrelated, vulnerable web application, without the victim’s
awareness or consent. To achieve this, it is su�cient to create a
single cross-origin HTTP request from the attacker webpage, a
capability that is native to the Web ever since Marc Andreessen
introduced the img HTML tag element in February 1993 [2].

Since its discovery in 2001 [36], CSRF vulnerabilities have been
continuosly ranked as one of the top three security risks for web
applications, along with cross-site scripting (XSS) and SQL injec-
tion (SQLi) [6, 11, 31]. Successful CSRF exploitations can result in
illicit money transfers [43], user account takeover [38], or remote
server-side command execution [19], to name only a few publicly
documented cases. In the past, similar vulnerabilities have been

discovered in many popular websites including Gmail [34], Net-
�ix [12], ING Direct [43], and, more recently, in Google, Skype, and
Ali Express websites [38].

Despite its popularity, CSRF has received only marginal atten-
tion, compared to SQLi and XSS. Most of the previous e�orts have
been spent in proposing active [20, 21, 24] or passive [6] defense
mechanisms, and little has been done to provide developers and
practitioners with e�ective techniques to detect this class of vul-
nerabilities. Classical vulnerability detection techniques utilize dy-
namic [4, 10, 32, 33] and static analysis techniques [3, 9, 18, 28, 39],
while mainly focusing on injection vulnerabilities [9, 10, 18] or
�aws speci�c to the application logic layer [10, 28, 32, 39]. Unfortu-
nately, none of the existing techniques are easily applicable to CSRF.
As a result, to date, CSRF vulnerabilities are still predominately
discovered by manual inspection [38].
Our Approach—We take a step forward by presenting Deemon, a
model-based security testing framework to enable the detection of
CSRF vulnerabilities. To the best of our knowledge, this is the �rst
automated technique that targets the detection of CSRF. Deemon
automatically augments the execution environment of a web appli-
cation, to enable the unsupervised generation of dynamic execution
traces, in the form of, e.g., network interaction, server-side execu-
tion, and database operations. Using these traces, Deemon infers a
property graph-based model of the web application capturing dif-
ferent aspects such as state transitions and data �ow models in a
uni�ed representation. Operating on the resulting model, Deemon
uses graph traversals to identify security-relevant state-changing
HTTP requests, which represent CSRF vulnerability candidates.
Finally, leveraging the augmented application runtime, Deemon vali-
dates the candidate’s vulnerability against the real web applications.

We assessed Deemon against 10 popular open source web appli-
cations and discovered 14 previously-unkown CSRF vulnerabilities
in four of them. These vulnerabilities can be exploited to take over
websites, user accounts, and compromise the integrity of a database.
Finally, we analyzed our test results to assess the current awareness
level of the CSRF vulnerabilities. In two cases, we identi�ed alarm-
ing behaviors in which security-sensitive operations are protected
in a too-selective manner.

To summarize, we make the following contributions:



http://attacker.org

https://bank.com

2

3

1

Figure 1: Authenticated CSRF attack.

• We present Deemon, an automated, dynamic analysis, se-
curity testing technique to detect CSRF vulnerabilities in
productive web applications;

• We present a new modeling paradigm based on property
graphs, that is at the core of Deemon;

• We show how Deemon’s models can be instantiated in an
unsupervised, automatic fashion, requiring only selected
GUI interaction recordings;

• We report on a practical evaluation of Deemon using 10
popular web applications, which uncovered 14 severe CSRF
vulnerabilities; and

• We assess the CSRF awareness level and discover alarm-
ing behaviors in which security-sensitive operations are
protected in a selective manner.

2 CROSS-SITE REQUEST FORGERY (CSRF)
In CSRF attacks, an attacker tricks the web browser of the victim
to send a request to a vulnerable honest website in order to cause
a desired, security-sensitive action, without the victim’s aware-
ness or consent. Desired actions can be, for example, illicit money
transfers [43], resetting account usernames [38], or the execution
of speci�c server-side commands [19]. CSRF attacks can be distin-
guished into two main categories: authenticated and login CSRF.
In an authenticated CSRF (aCSRF), a pre-established, authenticated
user session between the victim’s web browser and the targeted
web application exists. In a login CSRF, such a relationship does not
exist, but the goal of the attacker is to log the victim in by using
the attacker’s credentials. In the remainder of this paper, we focus
on aCSRF attacks, the signi�cantly larger category. An extensive
overview of login CSRF is provided by Sudhodanan et al. [38].

Figure 1 shows an example of an aCSRF attack. The actors of
an aCSRF attack are the user (i.e., the victim), a vulnerable target
website (e.g., bank.com, a home banking website), and an attacker
controlling a website (e.g., attacker.org). In an aCSRF attack,
the victim is already authenticated with the target website. Upon
a successful authentication, the website of the bank persists an
authenticated session cookie in the user’s web browser. From this
point on, whenever the user visits the website of the bank, the
browser includes this session cookie [5]. An attacker can exploit
this behavior of the browser as follows. First, she prepares an HTML
page containing malicious code. The goal of this code is to perform
a cross-origin HTTP request to the website of the bank. This can be

implemented in di�erent ways, e.g., with an HTML iframe tag, a
hidden HTML form with self-submitting JavaScript code, or via the
XMLHttpRequest JavaScript API [40]. Then, when a victim visits
the malicious page, her browser generates such a request, which
automatically includes the the session cookie. The bank checks the
cookie, and executes the required operation. If the HTTP request
encodes, e.g., a request to update user password, then the bank
executes it without the actual consent of the bank account owner.

More formally, we de�ne an aCSRF vulnerability as follows.

De�nition 1. A web application (e.g., bank.com) exposes an aCSRF
vulnerability, if the web application accepts an HTTP request (e.g.,
message 3) with the following properties:
(P1) The incoming request causes a security-relevant state change

of the web application.
(P2) The request can be reliably created by an attacker, i.e., the

attacker knows all the required parameters and values of
the request.

(P3) The request is processed within a valid authentication context
of a user.

Cross-origin requests can be used in other attacks without nec-
essarily causing a server-side state transition, e.g., accessing user
data stored in the target website. These attacks are addressed by
the same-origin policy (SOP) [5] for cross-origin requests, which
blocks the access to HTTP responses. However, the SOP does not
prevent the browser from performing HTTP requests. To defend
against malicious cross-origin requests, the server-side program
can check the request origin via the header Origin. However, this
header may not be present in a request. The current best-practice
aCSRF protection is the so-called anti-CSRF token [6]. An anti-CSRF
token is a pseudo-random value that is created by the server and
explicitly integrated into the request by the client. Various methods
exist to implement anti-CSRF tokens, including hidden form �elds
or custom HTTP headers. Further implementation details are left
out of this document for brevity.

3 CHALLENGES IN DETECTING ACSRF
A security testing approach designed to detect aCSRF vulnerabilities
faces two distinct classes of challenges, neither of them met by the
current state-of-the-art in security testing: detection challenges and
operational challenges, as discussed next.

3.1 Detection Challenges
Detecting aCSRF requires reasoning over the relationship between
the application state, the roles and status of request parameters,
and the observed sequences of state transitions. This leads to a set
of speci�c detection challenges that directly result from the unique
characteristics of the vulnerability class.

(C1) State Transitions—The �rst challenge is to determine when a
state transition occurs. Server-side programs implement several op-
erations; not all of them a�ect the state of the application. Consider,
for instance, the function of searching for a product in an online
store: The user provides search criteria, causing the server-side
program to search its database for matching products. The perma-
nent state of the user’s data in the application is una�ected by this
process. However, other operations change the state of the program.



Consider a user that wants to change their login password. The
server-side program uses the new password to update the database
entry. From that point on, the old password is no longer accepted;
thus, the state has changed.

Existing tools such as web application scanners (See, e.g., [11, 23])
mainly operate in a black-box manner. They crawl a web application
and send requests with crafted input. Vulnerabilities are detected
by inspecting responses. This approach works well with XSS and
SQLi, but does not scale to CSRF as it cannot discern when a request
changes the server-side state. Web crawlers can be made aware
of server-side states by inferring a model capturing transitions
via webpage comparisons: If the HTML content is similar, then
they originate from the same state (See, e.g., Doupé et al. [10]).
However, as pages contain dynamic content, the similarity may
not be determined precisely, thus resulting in inaccurate models.
Finally, techniques to infer models are often speci�c to the function
being tested (See, e.g., [32, 41]). aCSRF vulnerabilities can a�ect
any function of a web application; thus, function-speci�c models
cannot be easily used to detect aCSRF vulnerabilities.

(C2) Security-Relevant State Changes—The second challenge is
to determine the relevance of a state transition. State transitions
can be the result of operations such as event logging and tracing
user activity. These operations indeed change the state of the server,
but they are not necessarily security relevant. While a human may
distinguish the two cases, automated tools without a proper de-
scription of the application logic may not tell the two transitions
apart. Especially for static analysis approaches, security-neutral
state changes are indistinguishable from aCSRF candidates.

(C3) Relationships of Request Parameters and State Transi-
tions—The third challenge consists in determining the relations
between request parameters and state transitions. The identi�cation
of these relations is relevant for the detection of aCSRF vulnerabili-
ties. For example, consider a parameter carrying a random security
token. An attacker may not be able to guess such a parameter, thus
preventing her from reconstructing the HTTP request. The identi�-
cation of these parameters is important, as it suggests the presence
of anti-CSRF countermeasures, and can be used to develop a testing
strategy. For example, the tester may replay the request without the
token to verify whether the web application properly enforces the
use of the security token. Another example is a parameter carrying
a user input, e.g., a new user password, that is stored in the database.
An attacker can use this parameter to hijack a user account by using
a password that she controls.

Existing techniques do not determine the relations between pa-
rameters and state transitions. Web scanners attempt to identify
security tokens by matching parameter names against a prede�ned
list of patterns, e.g., the parameter being called token. In general, to
determine the role of a request parameter, we need to determine the
type of relations with state transitions. As these parameter values
traverse the tiers of an application, we may need to track their
�ow across all tiers, e.g., presentation, logic, and data. The resulting
model of data �ows can be enriched with type information, e.g.,
both semantic and syntactic types, to determine the nature of the
value, e.g., user-controlled or pseudo-random.

3.2 Operational Challenges
The operational challenges in detecting aCSRF are direct conse-
quences of addressing the detection challenges in the context of
dynamic security testing.

(C4) Transitions in Non-Trivial ApplicationWork�ows—The
fourth challenge is to reach state-changing requests in non-trivial
web application work�ows. Dynamic analysis techniques such as
unsupervised web scanners explore HTML webpages using breadth-
or depth-�rst search algorithms. However, these algorithms are too
simplistic to cope with the complexity of modern web application
work�ows in which users need to perform a speci�c sequence of
actions. Likewise, static analysis techniques look for patterns in the
source code to determine the presence of a vulnerability. However,
without a proper description of the work�ow, static approaches
scale poorly to large applications.

(C5) Side-E�ect-Free Testing—Dynamic testing for aCSRF vul-
nerabilities is centered around the iterative detection of state-chang-
ing HTTP requests (Challenges C1 & C2). However, as such requests
indeed change the application state, all further test requests at-
tempting to assess the relationships of request parameters and state
transitions (C3) will most likely operate on a now-invalid state.
Take for example the dynamic testing for aCSRF vulnerabilities
in a shopping cart web application. As soon as a test request has
submitted the cart beyond the check-out state, no further secu-
rity testing on this state transition can be conducted, as the active
shopping cart ceases to exist. Thus, a testing method is needed,
that allows evaluation of HTTP request-induced state changes in a
side-e�ect-free manner.

(C6) Comprehensive, Reusable Representation of Applica-
tion Functionality—The �nal challenge results from the previous
challenges. To detect security-relevant state changes, we need to
combine aspects of the web application. On the one hand, we have
transitions describing the evolution of the internal states of the
server-side program. On the other hand, we have data �ow infor-
mation capturing the propagation of data items across tiers and
states. These aspects can be represented by means of models.

In literature, there are many languages and representations to
specify models, ranging from formal languages [13] to custom
models tailored to the speci�c application function being tested
(e.g., [32, 41]). Often, the combination of models has been addressed
in a custom way. The shortcoming of this approach is that the com-
bination is achieved without specifying the relationships between
the models, thus making it hard to reuse it for other techniques. An-
other approach is to create representations that combine elements
of individual models, such as extended �nite-state machines that
�re transitions when certain input conditions hold [13]. However,
de�ning new modeling languages may not scale well, as a new
language is required as soon as new aspects need to be included.

4 DEEMON: OVERVIEW
To overcome the challenges of Section 3, we developed Deemon1,
an application-agnostic, automated framework designed to be used
by developers and security analysts during the security testing

1Source code and documentation of Deemon can be downloaded here https://github.
com/tgianko/deemon

https://github.com/tgianko/deemon
https://github.com/tgianko/deemon


...
User Actions Trace

...

Network Trace

...
Function Call Tracea1 a2 an...

User Actions

User Actions Replay
(a)

Dynamic Traces Generation
(b)

Tier 1

Tier 2

Tier 3

x
Z x

x
Z

x

x

Y

Z

Z

Z

Building a Model 
(c)

Web Application

Model Mining
(d)

Tests

Oracle

t1 t2 tm...

o

Test Execution
(e)

?

Test Result
(f)

X

Automated Steps

...
DB Queries Web Application

c1 cm...

Figure 2: Overview of the detection phase of Deemon.

phase of the software development life-cycle. The current version
of Deemon supports PHP-based web applications that use MySQL
databases, and it can be easily extended to support other languages
and databases. The key features of Deemon that allow for addressing
our challenges are the following:

• Deemon infers models from program execution observa-
tions capturing state transitions and data �ow information
(Challenges C1 & C3).

• Deemon uses property graphs to represent these models.
This provides a uniform and reusable representation and
de�nes precise relationships between models by the means
of labeled edges (Challenge C6).

• Deemon leverages a programmatic access to the property
graph via graph traversals to identify security-relevant
state changes (Challenge C2).

• Deemon augments the execution environment of a web
application and then reproduces a set of user actions to
observe server-side program execution (Challenge C4).

• Deemon relies on virtualized environments to test web ap-
plications. This enables full control of the web application
by taking and restoring snapshots (Challenge C5);

Deemon takes as input a set of user actions and an application
container of the web application under test. Deemon operates in
phases: instrumentation and detection. In the �rst phase, Deemon
modi�es the application container to insert sensors for the extrac-
tion of network traces, server-side program execution traces, and
sequence of database operations. In the second phase, Deemon auto-
matically reproduces user actions, infers a model from the resulting
traces, and tests the web application to detect aCSRF vulnerabilities.

4.1 Preparation
Deemon is meant to support developers and security analysts. In
this section, we brie�y present the tool as seen by a user.

Inputs—The inputs of Deemon are a set of user actions and an
application container of the web application under test.
User Actions: The �rst input is a set of user action sequences (see
Figure 2.a) that are provided by the tester. User actions are artifacts
commonly used in security testing [30] and there is a plethora of au-
tomated tools to create them via web browsers and use them when
testing web applications [30]. A user action is performed on the UI
of the web application. For example, a user action can be a mouse
click, a key stroke, or an HTML form submission. The sequence of

actions represent a web application functionality. For example, con-
sider the operation of resetting user credentials. The user actions
trace contains the following actions: load index.php page, click on
change credential link, type new username and password, and click
submit. Input traces can also be actions of a privilegded user, e.g.,
website administrator, when changing the website con�guration
from the administrator panel.
Application Container: The second input of Deemon is an applica-
tion container of the web application under test. An application
container consists of a runtime environment with software, de-
pendencies and con�guration. Web application containers contain
the web application (binary or source code), database server, and
application con�guration. Containers are convenient tools as they
allow the deployment of ready-to-use web applications. Nowadays
application containers are gaining momentum and are becoming a
popular means to distribute and deploy web applications.

Outputs—Deemon returns a vulnerability report, listing state-chang-
ing HTTP requests that can be used to perform aCSRF attacks.

4.2 Instrumentation
Given an application container, Deemon automatically installs sen-
sors to monitor the program execution. For example, for PHP-based
web applications, Deemon adds and enables the Xdebug [35] module
of the PHP interpreter, an extension that generates full function call
trees. Furthermore, Deemon installs a local HTTP proxy to intercept
HTTP messages exchanged between the server and the browser.

4.3 Detection
The core function of Deemon is the detection of aCSRF vulnerabili-
ties. The main steps are shown in Figure 2 and are all automated. The
detection begins by reproducing the user actions against a running
instance of the web application (Figure 2.a). The sensors installed
during the instrumentation produce execution traces that include
network traces and function call traces (Figure 2.b). Deemon runs
this step twice to observe, for example, sources of non-determinism
such as generation of pseudo-random data items. Each run is called
session. From these traces, Deemon infers a model which is the com-
position of simpler models, e.g., �nite-state machine and data �ow
model with data type information (Figure 2.c). Then, Deemon uses
model queries to mine both security tests and an oracle (Figure 2.d),
and runs them against the web application (Figure 2.e). Finally, it
evaluates test results against the oracle to detect CSRF vulnerabili-
ties (Figure 2.f).



5 MODELING
The overall goal of our modeling approach is to create a repre-
sentation of a web application that can address challenges C1-3
and C6. Challenge C1 requires obtaining an adequate model that
allows determining when a change of state occurs. We address this
challenge by building a �nite-state machine (FSM) from execution
traces captured by our probes. Challenge C2 consists in determin-
ing which state transitions are security-relevant. We observe that
security-relevant transitions are likely to occur less frequently than
other transitions. From this observation, we derive state invari-
ants based on frequency. Challenge C3 consists in determining the
relationship between request parameters and state transitions. In
particular, we are interested in identifying two types of HTTP pa-
rameters: parameters carrying unguessable tokens and parameters
carrying user input. We address this challenge by using a data �ow
model (DFM) with types (see [41]). The DFM represents a state as
a set of variables and can capture the propagation of data items
from HTTP requests to the SQL query. Each data item can have
syntactic types, e.g., string, integer, boolean, and semantic types,
e.g., constant, unique, user input. We use types to identify tokens
and user-generated inputs. Finally, we need a representation for
our models that can support (i) the creation of a model with in-
ference algorithms and (ii) the identi�cation of security-relevant
transitions. To address this challenge, i.e., C6, we map models into
labeled property graphs and use graph traversals to query them.

This section details the building blocks of our modeling approach.
In Section 5.1, we present property graphs, the mapping of models to
graphs, and elementary graph traversals. In Section 5.2, we present
the construction of a property graph.

5.1 Labeled Property Graph
A labeled property graph is a directed graph in which nodes and
edges can have labels and a set of key-value properties. An example
of a labeled property graph is shown below.

n1:L′ n2:L′ n3:L′′
e1:R′ e2:R′

e3:R′′

e4

k1:v1 k2:v2

This example shows three nodes. Nodesn1 andn3 have one property
each, i.e., k1 = v1 for n1 and k2 = v2 for n3. Nodes have labels. For
example, nodes n1 and n2 are labeled with L′ whereas node n3 is
labeled with L′′. Edges are also labeled. The edges e1 and e2 are
labeled R′, and edge e3 is labeled R′′.

5.1.1 MappingModels to PropertyGraphs. We now present
the mapping of traces, FSM and DFM to a property graph. Figure 3
shows the operation of updating the user password as a property
graph. This example covers the logic and data tiers of a web appli-
cation. For the sake of readability, user actions are not shown.

Traces and Parse Trees—In our approach, traces and parse trees
are important artifacts that are used throughout the analysis. First,
traces and parse trees are the input of the inference algorithms to
generate FSMs and DFMs. Second, traces are used to derive state
invariants, e.g., the number of distinct HTTP requests triggering the

same state transition. Third, parse trees are used for the generation
of tests to detect aCSRF vulnerabilities. Accordingly, we decided to
include them in the property graph.

A trace is a sequence of events observed by our sensors, e.g.,
HTTP messages or SQL queries. We represent an event with a
node of label Event. We chain events using edges with label next.
Parse trees represent the content of a trace event. For example, with
reference to Figure 3.d, the event e ′ is the following HTTP request:

POST /change_pwd.php HTTP /1.1
Host: bank.com
Cookie: SESSION=X4a
Content -Length: 15
Content -Type: application/x-www -form -urlencoded

password=pwnd

We parse HTTP requests and store the resulting parse tree in the
property graph. An example of a parse tree for the example is
shown in Figure 3.c.i. For simplicity, Figure 3.c.i does not show
the Host, Content-Type, and Content-Length HTTP headers. We
map parse trees into a property graph as follows. Parse trees have
three labels: Root, NTerm, and Term. The Root node label is used for
the root of a parse tree. The NTerm node is used for non-terminal
nodes of the parse tree, whereas Term is for the terminal nodes.
Nodes are connected using the child edge label.

Finite State Machines—We use FSMs to represent program states
and transitions between states. Our goal is the identi�cation of
state transitions triggered by an HTTP request. Accordingly, we use
HTTP requests as the symbols accepted by a transition. However, in
our model, HTTP requests are represented as nodes, and property
graphs do not support edges between a node, e.g., an HTTP request,
and an edge, e.g., a transition. As a result, we model a transition
between two states as nodes with three edges. The �rst edge is
directed to the node representing the accepted HTTP request. The
second edge is from the initial state of the transition to the transition
node. The third edge is directed to the new state. The mapping of
FSM elements to nodes, edges, and labels is shown in Table 1.

Data�ow Information and Types—To determine the relation-
ship between request parameters and state changing operations,
we use data�ow models (DFMs) with types as presented by Wang
et al. [41]. The data �ow model was originally designed to enrich
HTTP request parameters with abstract types such as syntactic
and semantic tables. Consider an HTTP request with a parame-
ter password=pwnd with the value pwnd provided by the user. The
DFM associates the parameter password with a syntactic label, e.g.,
string, and semantic labels, for example, user-generated (UG). In
our graph, we represent a DFM as a set of variables. A variable is a
node graph with a name (e.g., parameter name), a value (e.g., param-
eter value), and a type (e.g., semantic and syntactic type). Variables
can carry the same data item. In these cases, we say that there is
a propagation of data values. The rules that determine whether a
propagation exists are presented in Section 5.2.

An example of a DFM is shown in Figure 3.a. This DFM comprises
four variables, two for HTTP request parameters, i.e., session cookie
and password parameter, and two for the SQL WHERE and SET
clauses. Each variable has a type. For example, variable v1 has
semantic type SU, which means that the value is di�erent for each



Lo
gi

c
Ti

er
(i)

D
at

a
Ti

er
(ii

)

Data�ow Models
(a)

Finite-State Machines
(b)

Parse Trees
(c)

Traces
(d)

q0 q1 q2tr (q0, x ′) = q1

tr (q1, x ′′) = q2

tr (q1, x ′′′) = q2

trans to
trans to

transto

...

e′

e′′

e′′′

...

next

next

...

c′

c′′

...

next

HTTPReq

POST res

/change_pwd.php

child

child

hdr.-list

SESSION X4a

body

password pwnd

SQL-QUERY

UPDATE

child

trgt-table

users

SET set-cl.-list

password = pwnd

WHERE cond.

sid = X4a

v1 = X4a

syn_type: string

sem_type: SU

v2 = pwnd

syn_type: string

sem_type: UG

v3 = X4a

syn_type: string

sem_type: SU

v4 = pwnd

syn_type: string

sem_type: UG

causes

parses

parses

accepts

propag.

propag.

source

sink

has

has

has

has

Figure 3: Excerpt of property graphs for a model showing two tiers (logic and data).

user session, whereas varuable v2 has type UG. We represent the
propagation of data items with a source, a propagation chain and
a sink. For this, we use three types of edges, source, propag., and
sink. Figure 3 shows the complete propagation chain for the pwnd
data item. Finally, DFM variables are linked to FSM states with
has edges. This link determines the relationship between request
parameters and state-changing operations.

5.1.2 Relationships. The elements of our graph have rela-
tionships. Consider, for example, a parse tree that represents the
HTTP request causing a state transition. Our framework de�nes a
set of relationships between these elements. We now brie�y present
these relationships. The mapping of these relationships into a prop-
erty graph is shown in Table 2.

Data�ow Information—This relationship connects a DFM to a
FSM, or a DFM to a parse tree. In the �rst case, the variable can be
used to determine the state of a FSM. We model this relationship
with an edge from a state to a variable. In the second case, a variable
carries values from a source, e.g., HTTP parameters, or values used
to create a query.

Data Propagation—This relationship captures the propagation of
data items during the execution of a program. In our model, this
relationship is between two DFMs and represents the propagation
of data items across the tiers of a web application. For example,
consider a data value that is �rst provided with a user action; then
the value is included in an HTTP request; and, �nally, it is inserted
in a SQL query to be stored in the database.

Abstractions—Abstractions represent the link between an abstract
element and its concrete counterpart. Abstractions are an expedient
to reduce the complexity of a problem or to focus the analysis on
relevant parts. For example, abstractions remove variable parts such
as data values from SQL queries. The resulting abstract SQL query
is then compared with other abstract queries to group them. This
expedient is used by our model inference algorithms and we present
abstractions in Section 5.2.

Event Causality—This relationship can occur, for example, be-
tween a user click on a link and the resulting HTTP request. Our
sensors can establish this type of relationship.

Accepted Inputs—This relationship captures the connection be-
tween HTTP requests and state transitions. I� HTTP requests cause
a transition, we say that the FSM accepts the HTTP request.

5.1.3 Graph Traversals. Graph traversals are the means to
retrieve information from property graphs. They allow querying
a graph based on nodes, edges, and properties. Deemon uses tra-
versals written in the Cypher query language [29], a graph query
language supported by popular graph databases such as Neo4j. The
Cypher language follows a declarative approach in which each
query describes what we want to retrieve and not how. The what
is speci�ed with graph patterns, a description of a subgraph using
nodes, edges, labels, and properties. Deemon uses graph queries for
the creation of FSM and DFS (See Section 5.2) and to generate tests
for the detection of aCSRF (See Section 6).

For the sake of readability, we do not present the Cypher syntax
but a simpli�ed notation that retains the declarative approach. We
use sets of nodes and edges to represent Cypher queries. For exam-
ple, a query Q can be de�ned as all nodes n in the property graph
for which a given predicate p is true, i.e., Q = {n : p (n)}. In our
notation, the predicate p is the graph pattern. We use parametric
logic predicates for graph patterns. In the following, we present
elementary graph patterns that allow establishing a basic language
to operate with the property graph.

We start with an example to show elementary queries to retrieve
nodes and edges via labels. These queries are generic and are not
tied to our framework.

Example 5.1 (Elementary Queries). To create queries, we �rst
de�ne the graph pattern. Then, we use the predicate to de�ne a set.
The �rst elementary pattern is true i� a node has a given label L:

LabelL (n)
def
:= “n : L”



Component Node label(s) Relationship(s)

FSM State, StateTrans q
trans
−−−−→ t ,

t
to
−→ q ,

t
accept
−−−−−→ q

DFM Variable v ′
propagat
−−−−−−−→ v ′′

Trace Event e ′
next
−−−→ e ′′

Parse tree Root, NTerm, Term n
child
−−−−→m

Table 1: List of nodes and edges for our models.

Name Mapping into a Property Graph

Data Flow Inform. v : State
has
−−→ q : Variable

Data Propagation v1 : Variable
propag.
−−−−−−→ v2 : Variable or t : Term

Abstractions apt : Root
abstracts
−−−−−−−→ pt : Root,

ae : Event
abstracts
−−−−−−−→ e : Event

Event Causality e1 : Event
causes
−−−−−→ e2 : Event

Accepted Inputs st : StateTrans
accepts
−−−−−→ pt : Root

Table 2: List of relationships between models.

The second example pattern is true i� a graph edge has a given
label R:

LabelR (n,m)
def
:= “e = (n,m) ∧ e : R”

These predicates can be used to de�ne queries. For example, to �nd
all nodes with label L we can write the following query:

Qlabel = {n : LabelL (n)}

As graph patterns may have more than one parameter, we can use
quanti�ers (i.e., ∀ or ∃) to broaden or limit the scope of a query. For
example, consider the query to retrieve all nodes with an outgoing
edge R, we can use the following query:

Qout = {n : ∀m, LabelR (n,m)}

From these elementary patterns and queries, we create a basic
query language that can express elements of our models.

Example 5.2 (Queries for Models). Consider the example of re-
trieving the states of a FSM. First, we de�ne a predicate for the
pattern, called State(q), that is de�ned as LabelState (n). Then,
we use this pattern in a query that searches for all states q:

QStates
def
:= {q : State(q)}

We create similar patterns for relationships. For example, with
reference to Figure 3, consider the graph pattern between the state
q0 and q1. We can call this pattern Trans(q0, t ,q1) and we de�ne it
as Labeltrans (q0, t ) ∧ Labelto (t ,q1).

In a similar way, we create patterns for all nodes and edges in
Table 1 and in Table 2. We also create patterns using properties.
For example, HTTPReq(pt ) is a pattern for a Root node pt whose
property t = HttpReq. This gives us a basic language to operate
with our models.

The notation of these two examples adheres to the declarative ap-
proach followed by Cypher. The actual search of all nodes matching
the predicates used in the set de�nition is performed by the query
processor. The query processor is a graph database component that
transforms declarative queries into a sequence of operations to
traverse the graph and search for all matching nodes.

5.2 Model Construction
After having presented the building blocks of our modeling ap-
proach, we present the construction of our model. The �rst step of
the construction consists in importing traces and parse trees in the
property graph. Then, we use inference algorithms to create FSMs
and DFMs.

5.2.1 Importing Traces and Parse Trees. We import traces
and parse trees in the following order:

User Actions—We �rst import user actions traces. For each ele-
ment of the trace, we create a node Event. If two events are consec-
utive in a trace, then we place an edge next between the two nodes.
Then, we parse the user action into the three main elements: the
type of action (e.g., mouse click or key stroke), the UI element on
which the action is performed (e.g., HTML element), and, if present,
the user input (e.g., username). Then, we connect the root node of
the parse tree to the trace node with a parses edge. To distinguish
user action events from other events (i.e., HTTP messages), we
add a node property t to UA which stands for user action. Finally,
we add a node property for the user performing these actions. For
example, if the user actions are performed by an administrator, we
add the property user = admin.

HTTPMessages—First, we import a trace as seen for user actions.
Second, for each HTTP message, we create parse trees for HTTP
requests, responses, URLs, cookies, HTTP POST data, and JSON
objects. We link the root with the event with a parses relationship.
Then, we link the HTTP messages to network events with parses
edges, and causes edges between user actions and HTTP request
events. The property t is set to HTTPReq. Finally, as described in
Section 4.3, Deemon reproduces user actions twice, thus generating
two HTTP message traces, i.e., sessions, which can be di�erent due
to newly generated cookies or anti-CSRF tokens. When importing
traces, we add the trace session number as a node property.

Database Queries—We parse the call trees to extract calls to data-
base APIs and retrieve SQL queries. We add a parses relationship
between the parse trees and the trace event. Then, we add causality
edges between HTTP request events and the resulting query events.
Similarly as for HTTP messages, we add the trace session number
as a node property. Finally, the property t is set to SQL.

5.2.2 Finite-State Machines. After importing traces and cre-
ating parse trees, we construct the FSM.

Abstract Parse Trees—The rule to build a FSM is the following: A
state transition occurs when similar HTTP requests cause similar
SQL queries. Similarity between HTTP requests and queries is
achieved by the means of abstract parse trees, i.e., parse trees that
omit a few selected terminal nodes. For HTTP requests, we neglect
URL parameter values and POST data values. For SQL queries, we
neglect terminal nodes at the right-hand side of SQL comparison
operations. Figure 4 shows the parse tree of an HTTP request to
update a user password and an abstract parse tree in which terminal



HTTPReq

POST res

/change_pwd.php

child

child

hdr.-list

SESSION X4a

body

password pwnd

AbsHTTPReq

POST res

/change_pwd.php

child

child

hdr.-list

SESSION ∅

body

password ∅

AbsHTTPReq

HTTPReq’

HTTPReq”

e′

e′′

c′

c′′

SQL’

SQL”

AbsSQL

causes

causes

abstracts

abstracts

abstracts

abstracts

abstracts

parses

parses

parses

parses

Figure 4: On top: abstract relationships between a parse tree
and an abstract one. Below: visualization of the graph pat-
tern to identify transitions.

nodes were neglected. Abstract parse trees are unique. If two parse
trees result in the same abstract tree, we place two edges abstracts
from the abstract parse tree to the two parse trees.

Clustering—After the creation of abstract parse trees, we extract
HTTP requests triggering the same transition from the graph .
Figure 4 exempli�es this situation, showing the roots of parse
trees and trace events. Two requests, e.g., the roots HTTPReq′ and
HTTPReq′′, trigger the same transition if (i) the HTTP requests
have the same abstract parse tree, i.e., with root AbsHTTPReq, (ii)
the HTTP requests cause SQL queries, i.e., parse tree roots SQL′
and SQL′′, via a causality edge, and (iii) the SQL queries have the
same abstract parse tree, i.e., AbsSQL. HTTP requests matching
this description can be found with this query:

QAux
def
:= {(abs ′h ,h

′,abs ′sql , sql
′) : ∃e ′, c ′, Abs(abs ′h ,h

′)∧

Parses(h′, e ′) ∧ Causes(e ′, c ′)∧

Parses(sql ′, c ′) ∧ Abs(abs ′sql , sql
′)}

This query returns a set of 4-tuples. For example, with reference to
Figure 4, this query returns two 4-tuples: the �rst withAbsHTTPReq′,
HTTPReq′,AbsSQL′, and SQL′, and the second withAbsHTTPReq′′,
HTTPReq′′, AbsSQL′′, SQL′′. If we group these tuples by abstract
HTTP request and abstract SQL query, the resulting groups rep-
resent transitions satisfying our rule. The HTTP requests in each
group are the symbols causing the state transition.

FSM—To create a FSM, we create one state node for each edge next,
and a transition for each HTTP request. Then, we minimize the
FSM using the clustering algorithm [16].

5.2.3 Data�ow Model and Information. Finally, we con-
struct the data �ow model with types.

Variables—Variables are derived from terminal nodes in parse trees.
The terminal nodes are the same ones neglected in abstract parse
trees. The value of the variable is the symbol of the terminal node,
whereas the variable name is the path of the terminal node from
the root. Then, we link variables to states with an edge has.

e1 e2
next

e′2

e′′2

causes

causes

UserAction1

pwnd

parses

child

UserAction2
parses

HTTPReq

pwnd

parses

child

SQL

pwnd

parses

child

Case 2

Case 1

(a) User action trace

(b) HTTP message trace

(c) DB queries trace

Figure 5: Example of propagation along causality edges
(Case 1) and backward propagation chain (Case 1).

Data Propagation—After the creation of variable nodes, we recon-
struct the propagation of data values traversing application tiers.
Consider the example in Figure 5 which models a user changing
her password. The user types a new password pwnd via a user ac-
tion, i.e., e1. This user action is parsed by the parse tree with root
UserAction1. Then, the user submits the password (e2) which is
received by the server (e ′2) in an HTTP request with root HTTPReq.
Finally, the server uses the password in a query (e ′′2 ) with root SQL.
In this example, we can distinguish two cases of data propagation.
In the �rst case, the data item pwnd propagates along causality
edges, i.e., from e ′2 to e ′′2 . In these cases, we create a query to re-
trieve terminal nodes of HTTP and SQL trees that are reachable
via causality edges as shown in Figure 5. The variables associated
to these terminal nodes are then linked via a propag. edge. In the
second case, the data items propagates from e1 to e ′2 using �rst an
edge next, and then a causality edge. We create a query to retrieve
the terminal nodes from user actions to HTTP requests using the
query pattern in Figure 5, and then we place propag. edges between
the variables.

Type Inference—We use types to distinguish security-relevant
data values (e.g., anti-CSRF tokens) from uninteresting ones (e.g.,
constants). Starting from a state transition, we select all variables of
a state and group by variable name. Each group is passed to a type
inference algorithm which returns the types matching each group.
The type inference extracts both syntactical types, e.g., integer,
decimal, and boolean, and semantic ones, e.g., session unique (SU),
user unique (UU) and constant (CO). The rules to infer a semantic
type are the following. If all values are the same, then the type is CO.
If the data values are the same within a trace session but di�erent
between sessions, then the type is SU. If the data values are the
same within the traces of a user, but di�erent between users, then
the type is user unique, i.e., UU. The user-generated (UG) semantic
type is added when there is a propagation chain that starts from a
user action. For example, the chain for pwnd is of type UG.

6 MODEL MINING AND TEST EXECUTION
We now present the test generation via model mining (Section 6.1)
and the process of test execution and evaluation (Section 6.2).



6.1 Test Generation
A test of our approach is a state-changing HTTP request and, op-
tionally, an HTTP request parameter carrying an anti-CSRF token.
First, we query our model to retrieve all relevant state-changing
HTTP requests. Second, for each HTTP request, we mine our model
to retrieve HTTP parameter names that carry an anti-CSRF token.
As a �nal step, we query our model to extract the oracle. The oracle
represents expected behavior that we need to observe during a test
to decide whether a relevant state transition occurred.

We begin with a query to detect HTTP requests that trigger
security-relevant state transitions. Then, we present the query to
identify parameters. Finally, we present a traversal to extract the
test oracle.

6.1.1 State Transitions. State-changing HTTP requests can
be retrieved by starting from all state transition nodes, and then
by traversing the accepts to reach an HTTP request. If such an
edge exists, then the HTTP request is causing a change of state.
We can express this graph traversal as follows. The graph pattern
representing connections between an HTTP request parse tree pt ,
and a state transition node t , is the following:

SC(pt ,q′, tr ,q′′)
def
:= Trans(q′, tr ,q′′) ∧ Accepts(tr ,pt )∧

HTTPReq(pt )

where q′ and q′′ are the two states involved in the state transition
tr and pt is an HTTP request. Then, we use the predicate in a query:

QSC
def
:= {pt : ∀q′,q′′, tr , SC(pt ,q′, tr ,q′′)}

This set contains all parse tree roots pt that can trigger any transi-
tion of state.

6.1.2 Relevant State Transitions. QSC contains all HTTP re-
quests that cause a change of state. However, not all changes of
state are relevant. For example, requests may result in database
operations to log user activities, which is not a security-critical
action. To identify such non-critical state changes, we hypothesize
that irrelevant queries are likely to occur multiple times within a
trace. The occurrence of queries can be determined via abstract
parse trees for queries. As a result of the FSM construction, all
SQL parse trees reachable via abstracts from the same abstract
SQL query are similar queries. The number of outgoing abstracts
edges is the number of occurrences of similar queries.

Starting from this observation, we re�ne QSC to take into account
abstract parse trees of SQL queries and their outgoing abstracts
edges. The re�nement extends QSC by traversing (i) an edge parses
from the HTTP request to the HTTP message event, (ii) a causality
edge from HTTP message to the data layer event, (iii) a parses
edge from the data event to the SQL query, and (iv) the SQL query
to the abstract SQL query. This query returns a list of pairs of the
root of an HTTP request and the root of an abstract SQL query.
From this list, we remove all pairs whose abstract SQL query has a
number of outgoing edges greater than 1. The HTTP requests of
the remaining pairs are called relevant state change transitions. We
show the accuracy of this heuristic in Section 7.

6.1.3 Security Tokens. After having identi�ed relevant state-
changing requests, we search for parameters carrying anti-CSRF

tokens. Anti-CSRF tokens can be transported as URL parameters,
POST parameters, or in custom HTTP headers. During the con-
struction of the DFM, we created variables with semantic types. For
example, variables labeled as SU or UU carry a value that changes
across sessions. As anti-CSRF tokens are required to be unpre-
dictable for the attacker, these variables can carry these tokens. For
each state-changing HTTP request, we select all variables with type
SU or UU. Given the root of the parse tree of an HTTP request, we
traverse the accepts to reach the transition node. From the transi-
tion node, we traverse the to, thus reaching the new state. Then,
we retrieve all variables with sem_type ∈ {UU, SU}. The output of
these queries is a list of pairs of a state-changing HTTP request
and a variable name carrying a potential anti-CSRF token.

6.1.4 Oracle. The HTTP request and, optionally, the parame-
ter carrying an anti-CSRF token are used to generate a test against
the web application. At the end of a test, we need a way to establish
whether a security-relevant state transition occurred. As discussed,
a state transition is relevant if it executes a non-reoccurring SQL
query. Accordingly, for each HTTP request that we intend to test,
we retrieve the abstract parse tree roots of SQL queries with an
out-degree equal to one. The traversal to reach abstract SQL queries
is shown in Figure 4. These abstract SQL queries are the oracle for
the HTTP request.

6.2 Security Tests
We now have pairs of parse trees of state-changing HTTP requests
and parameters. The goal of our security tests is to verify the replay-
ability of the requests and check whether they cause SQL queries
that are similar to ones in the oracle.

We test web applications as follows. If the HTTP request has an
anti-CSRF parameter, we generate an HTTP request by omitting
the parameter. If the HTTP request does not have an anti-CSRF
parameter, we generate an HTTP request from scratch. In both
cases, we update the request’s session cookie by replaying the
user login user actions2. During the test execution, we retrieve
the resulting server-side call graph trace to extract SQL queries.
Then, we compare SQL queries with our oracle. The comparison can
result in one of the following cases. If one of the observed queries
matches a relevant query of our model, then our test managed to
reproduce the same change of state. In this case, we mark the test
as successful. If all queries either match a repeated query or are not
in our model, then we conclude that we cannot reproduce the same
state-changing operation, and mark the test as failed.

7 EVALUATION
We now present the evaluation of Deemon against popular web
applications.



Category Web Application Version LoC

Accounting Invoice Ninja (IN) 2.5.2 1,576,957
Simple Invoices (SI) 2013.1b.8 601,532

eCommerce AbanteCart 1.2.4 151,807
OpenCart 2.1.0 153,863
OXID eShop 4.9.8 370,723
PrestaShop 1.6.1.2 420,626

Forum MyBB 1.8.8 150,622
Simple Machines Forum (SMF) 2.0.12 153,072

eMail Horde Groupware Webmail (Horde) 5.12.14 178,880
Mautic 1.4.1 2,190,920

Table 3: Web applications for the evaluation.

7.1 Testbed
We assessed Deemon against ten web applications retrieved from
the Bitnami catalog [8]. Bitnami is a provider of packaged, ready-
to-deploy applications that are typically created upon a customer
request. Based on this model, we consider the Bitnami catalog to
contain popular web applications.

We selected web applications from four categories, i.e., account-
ing, eCommerce, email, and forum, in order of appearance. We
collected initially 20 applications. Then, during the instrumentation
and trace generation, we decided to discard 10 of them: Four used
an unsupported runtime environment (i.e., Java or Python), two
required paying fees, three of them su�ered from a bug in Xdebug
(an important component for our approach), and one required a
publicly available email server. The list of selected web applications
is shown in Table 3.

7.2 Instrumentation
The �rst step of our evaluation is the instrumentation of the Bitnami
applications. Bitnami applications are distributed as self-contained
virtual machine (VM) images. Deemon �rst extracts the virtual disk
from the VM image, assigns the disk local mount point, and cre-
ates a folder to store program traces. Then, Deemon edits the PHP
interpreter con�guration �le (i.e., php.ini) to enable Xdebug—a
PHP extension that generates function call tree �les—and to change
the default Xdebug settings parameters3. Finally, Deemon adds a
system user and enables the OpenSSH server for the remote access
to retrieve call tree �les.

After the instrumentation, Deemon imports the VM image in the
Virtual Box hypervisor. It boots the VM and takes a snapshot. This
snapshot will be the starting point for the rest of the analysis.

7.3 User Actions Input Trace
We captured user actions traces using Selenium IDE [37], a plugin
for Firefox. For each category of web application, we used two user
roles: regular user (e.g., customer for eCommerce applications) and

2User actions traces are factored in two parts: actions for the user login and actions
for the web application operation. Existing tools to capture user actions, e.g., Selenese
IDE [37], support trace factoring. Factoring can be done during the capture or after
the generation by searching for user credentials in the trace. We detail the creation of
factored user actions traces in Section 7.
3Deemon requires the collection of full function variable name and content, function
return values, and a computer readable trace �le format. These are disabled by default.
For more details, please refer to [35].

administrator. For each role, we registered user actions for a selec-
tion of web application work�ows. We focused on work�ows that
are common to all categories, such as user sign-up and credential
update, and work�ows which are speci�c to a category, e.g., invoice
creation for accounting web applications.

Deemon uses user actions traces both to generate dynamic traces
and to test the web application against aCSRF. In the �rst case,
Deemon replays all user actions (See Section 7.4). In the second
case, Deemon replays only user login actions to update the HTTP
request’s session cookie (See Section 6.2). To distinguish user lo-
gin actions from the rest, we use the trace factoring functionality
of Selenium IDE. More speci�cally, we captured input traces as
follows:

• New work�ow and no traces for a role: We use Selenium IDE
to capture the entire sequence of user actions of the work-
�ow. Then, we factor actions in two sub-traces: one con-
tains user login actions and the other contains work�ow-
speci�c actions. Each sub-trace is stored in its own �le;

• New work�ow and a trace for the user exists: We import
user login actions in Selenium IDE and then capture the
new work�ow-speci�c user actions;

• Same work�ow but new user : We duplicate the existing
trace �les, and replace credentials in the user login trace
�le. As traces are plain-text �les, we use a script to �nd
and replace user credentials.

The number of work�ows (WFs) per web application is shown in
Table 4. The number varies according to availability of o�-the-shelf
functionalities and the types of roles.

7.4 Dynamic Traces Generation
To generate dynamic traces, Deemon replays user actions against an
instrumented VM. Action replaying is done step-by-step using Sele-
nese Runner Java (SRJ) [37], an interpreter of Selenium user actions,
that controls a headless Firefox. The resulting requests are sent to
an HTTP proxy that forwards them one-by-one to the server. When
the rendering process of the browser is �nished, SRJ signals that all
statically referenced external resources are retrieved (e.g., images,
CSS). Then, Deemon waits for 4 seconds (con�gurable) to honor any
JavaScript asynchronous requests. After that, no more requests are
accepted, and the next action is �red. The �rst request that entered
the queue is associated to the �red user action. The association is
used during the model construction to establish causality. Images
and CSS are not likely to change the state and Deemon does not
include them in the network trace. Deemon uses a customizable list
of MIME-types and �le extensions to exclude these resources.

Throughout the replaying of user actions, whenever Deemon
receives an HTTP response, it accesses the VM to retrieve the
generated PHP function call tree and session data. The call tree
�le is associated to the request. This association is used during the
model construction to establish causality. Finally, the call tree �les
are then processed to extract the MySQL queries executed by the
web application.

7.5 Performance
In our assessment we used two computers. To generate traces and
test for execution, we used a workstation with an Intel i5-4690 CPU,



Web Apps WFs Tr. Gen. Mod. Gen. Nodes Edges Test

AbanteCart 10 212s 1,446s 1,689,083 2,174,622 142s
Horde 3 177s 218s 23,395 30,920 153s
IN 11 152s 215s 97,465 123,419 82s
Mautic 6 176s 485s 191,038 237,036 196s
MyBB 12 214s 261s 96,766 119,270 183s
OpenCart 8 179s 312s 160,401 224,351 123s
Oxid 14 163s 372s 484,651 611,986 333s
Prestashop 13 296s 396s 214,369 273,865 283s
SI 9 128s 170s 34,248 44,983 31s
SMF 7 134s 159s 61,738 78,893 493s

Table 4: Execution time of Deemon.

Web Apps. Reqs SC Reqs Rel. SC Reqs(∗)

AbanteCart 335 335 8 -98%
Horde 21 21 3 -86%
IN 103 103 11 -89%
Mautic 58 21 8 -62%
MyBB 104 104 21 -80%
OpenCart 117 117 11 -91%
Oxid 165 165 10 -94%
Prestashop 267 195 16 -92%
SI 92 7 7 0%
SMF 118 118 69 -42%

Total 1,380 1,186 164 -86%
* descrease % from SC Reqs

Table 5: Analysis results for the identi�cation of relevant
state-changing (SC) requests.

an SSD disk and 32 GB of RAM. The workstation hosted a Virtu-
alBox hypervisor that Deemon used to deploy Bitnami application
containers. To generate our graph, we used a workstation with an
Intel i7-4600U CPU, an SSD disk and 12 GB RAM. We used a single
instance of Neo4j to handle property graphs of all applications with
a total of three million nodes and four million edges.

Overall, Deemon took about 13 minutes to produce the output
report for a single web application (see Table 4). About 50% of the
execution time is spent to generate traces and testing, which are
largely in�uenced by the web application behavior. For example,
the �rst time that a Prestashop webpage is requested, it creates a
cache for frequently requested resources. As we reset the virtual
machine to the initial state, Deemonwaits for Prestashop to re-create
the local cache. Finally, model generation took in average 7 minutes
per web application. The execution of queries takes less then 60s.

7.6 Detection of aCSRF
Deemon discovered 29 security-relevant state-changing requests.
17 of these tests detected a vulnerability in four web applications:
AbanteCart, Mautic, OpenCart, and Simple Invoices. The remaining
12 requests did not detect vulnerabilities. We present attacks in
Section 8.

aCSRF Candidates—Table 5 shows the number of state-changing
operations (column “SC Reqs”) compared with the total number of
operations (column “Reqs”). Results are aggregated by web appli-
cation. Almost all operations change the state. However, not all of
these operations are necessarily relevant for the security analysis.
For example, some operations may merely log user activities or

be used to manage user sessions. Thus, within a work�ow, these
operations most likely reoccur multiple times. Table 5 (column “Rel.
Reqs”) shows the total number of relevant state-changing opera-
tions. The number of relevant operations decreased considerably,
i.e., on average by -86%, from 1,186 to 164. The decrease is more
evident in applications like AbanteCart, where the number of op-
erations decreased by 98% (from 335 to 8), whereas in other cases
like Simple Invoice, the number remained unchanged.

We manually inspected SQL queries that were excluded to as-
sess the accuracy of our heuristic. The total number of abstract
SQL queries of our testbed is 704, of which 285 are considered not
relevant. All these queries are used to perform one of the following
operations: session management (e.g., creating a user session and
refreshing of session token validity), logging URL access, tracking
user activity, and cache management (e.g., MyBB stores entire CSS
�les in the DB). As these queries are not relevant for our analysis,
we conclude that our heuristic is accurate.

Security Tokens—Deemon identi�ed 356 variables of HTTP re-
quests. 248 of them are discarded as they are cookies (192 variables),
boundary markers of the multi-part form data encoding (29 vari-
ables), and parameter names used with timestamps4 (27 variables).
These parameters cannot successfully protect against aCSRF vul-
nerabilities. The remaining 108 variables may be anti-CSRF tokens
and are used by 53 operations out of 164. The remaining 111 state-
changing operations are not protected.

Security Testing—Table 6 shows the total number of tests that
were generated for each approach. In total, we executed 111 tests
for unprotected operations and 108 for protected ones. Deemon
monitored the test execution by using the sensors installed dur-
ing the instrumentation of the application container. In total, 29
tests were successful and discovered severe vulnerabilities. We dis-
cuss these results in detail in Section 8. The remaining 190 tests
failed. The majority of failed tests among the protected operations
are caused by the presence of an anti-CSRF token. In Section 8,
we present an in-depth discussion of the use of this token.The re-
maining failed tests (including several unprotected operations) are
caused by multi-step work�ows in which the tested HTTP request
depends on another request that is not part of the test. We leave
the study of dependencies between requests as a future research
direction.

8 RESULTS
We now detail the vulnerabilities that Deemon discovered in the four
vulnerable web applications. We also discuss tests that discovered
state transitions that cannot be exploited in a aCSRF attack.

8.1 Exploitable Vulnerabilities
Four web applications of our testbed are vulnerable to aCSRF at-
tacks. The severity of this vulnerability ranges from very high, i.e.,
customer account takeover, website takeover, and database deletion,
to low, i.e., adding items into a shopping cart. These vulnerabilities
can potentially a�ect millions of websites. For example, according
to Pellegrino et al. [32], OpenCart is used by at least nine million
websites whereas AbanteCart is used by 21 thousand websites. We

4This technique is often used to bypass browser caching mechanisms



Web Apps. Protected Unprotected

TCs Fail. Succ. Expl. TCs(∗) Fail. Succ. Expl.

AbanteCart 3 2 1 1 5 2 3 2
Horde 3 3 - - - - - -
IN 12 12 - - - - - -
Mautic 19 17 2 2 - - - -
MyBB 1 1 - - 20 9 11 -
OpenCart 2 1 1 1 9 5 4 4
Oxid 33 33 - - - - - -
Prestashop 7 7 - - 11 11 - -
SI - - - - 7 - 7 7
SFM 20 20 - - 47 47 - -
* one TC for each unprotected operation

Table 6: Generation and assessment of test cases. TCs=nos.
of testcases, Fail./Succ.=nos. of un/successful tests, and
Expl.=nos. of tests that exploited an aCSRF vulnerability

responsibly disclosed these vulnerabilities to the developers. In this
section, we present a comprehensive overview of our �ndings and
a detailed description of the most severe issues.

8.1.1 Overview of all Vulnerabilities. In summary, we dis-
covered the following vulnerable operations:

AbanteCart—An attacker can (i) take over a customer’s user ac-
count and (ii) add or modify the shipping address. Developers have
already �xed this vulnerability.

OpenCart—An attacker can (i) take over a customer’s user account,
(ii) add or modify the shipping address, and (iii) add items to a
customer’s shopping cart5.

Mautic—An attacker can (i) delete a marketing campaign (part of
the core logic of the web application), and (ii) delete recipients from
a marketing campaign. Developers of Mautic were unresponsive
and we requested and obtained a CVE entry (CVE-2017-8874).

Simple Invoices—An attacker can (i) create new website admin-
istrators and customers, (ii) enable payment methods, (iii) create
new invoices, and (iv) change taxation parameters. Developers of
Simple Invoices acknowledged the presence of the �aw, but they
were not working on a patch yet. Accordingly, to protect SI users,
we requested and obtained a CVE entry (CVE-2017-8930).

8.1.2 Attack #1: Account Takeover with AbanteCart and
OpenCart. The vulnerable state-changing operations of both web
applications are not protected by anti-CSRF tokens.

The attack against OpenCart exploits two aCSRF vulnerabilities
in the operations to (i) change the user email address and (ii) to
update user passwords. When changing this security-sensitive in-
formation, OpenCart neither uses anti-CSRF tokens, nor requires
users to provide their current password. As a result, an attacker can
use aCSRF to reset both email and password to hijack an account.

The attack against AbanteCart exploits the aCSRF vulnerability
in the operation to change user data (e.g., email address, �rst and last
name). As opposed to OpenCart, AbanteCart does not use the email
address as username. However, it permits recovering usernames
and resetting user passwords via the “forgot username” and “forgot
password” features. To reset the username, AbanteCart asks for an
5This vulnerability was also found and reported by a third party in independent and
parallel research.

email address and the last name of the customer, then sends the
username in an email. As the attacker can change the email and
last name with an aCSRF attack, she can successfully retrieve the
username. The “forgot password” requires the username and the
email address. As the attacker possesses both, she receives a link to
reset the password via email.

8.1.3 Attack #2: DatabaseCorruption inMautic. Our tests
discovered two aCSRF vulnerabilities in Mautic which allow an at-
tacker to compromise the core functionalities of the software. Mau-
tic is a marketing automation web application which allows users
to create email marketing campaigns and to manage the contacts of
the campaign. Our tests discovered aCSRF vulnerabilities in these
two operations in which an attacker can delete a speci�c campaign
or a contact. The identi�er used to refer to both campaigns and
contacts is an incremental integer number. An attacker can either
compromise speci�c campaigns by deleting them or by deleting
users, or can delete all existing campaigns and contacts.

8.1.4 Attack #3: Web Application Takeover with Simple
Invoices. Our analysis discovered that seven state-changing opera-
tions in Simple Invoices are not protected by any session-unique or
user-unique data value. In total, six work�ows are vulnerable to aC-
SRF vulnerabilities. These work�ows are: creation of a new website
administrator, creation of a new customer account, enabling pay-
ment methods (e.g., PayPal), adding a new invoice to the database,
and changing both global and invoice tax rates.

8.2 Non-Exploitable Tests
11 tests caused a change of state in MyBB. The operations under test
were privileged operations performed by the website administrator.
While the tests were successfully executed, they cannot be exploited
by an attacker. MyBB uses a secret user-unique API key which
authenticates the user when performing state-changing requests.
If the key is valid, then the operation is executed. While for regular
users, in our model this key is correctly labeled unique per user,
for the administrator, the key is labeled constant. In our analysis,
we used traces from a single administrator user, as MyBB has no
concept of multiple administrator accounts. Thus, all these traces
contained the same key, causing our type inference algorithm to
infer the constant type. Accordingly, the key is included in our
tests. The server-side program veri�es that the key belongs to the
administrator and executes the requested operation.

9 ANALYSIS
Despite its popularity and severity, our results show that the risk
posed by aCSRF vulnerabilities is overlooked or even misunder-
stood. An analysis of our results exposes three distinct classes of
developer awareness—complete, partial and nonexisting:

Complete Awareness—At one end of the awareness spectrum, we
have full awareness, in which developers deploy aCSRF counter-
measures for all state-changing operations. Examples of this group
are Horde, Oxid, and Prestashop. For example, in the case of Oxid,
all 33 tests failed when omitting an anti-CSRF token.

Unawareness—At the other end, we have complete unawareness.
Developers may still not be aware of aCSRF nor of the security



implications of successful exploitations. As a result, developers may
leave state-changing operations unguarded. Simple Invoices is an
example of such a case, in which all state-changing operations are
vulnerable to aCSRF attacks.

PartialUnawareness—We observed two interesting cases in which
protections are deployed in a selective manner. From our testbed,
we can distinguish two clear cases.
Role-based Protections: Examples for this case are OpenCart and
AbanteCart, which treat regular users and administrators di�er-
ently. Our tests showed that administrator operations are protected
by anti-CSRF tokens. Omitting these tokens results in rejected state-
changing operations. This shows that developers are aware of the
security risks and that they deployed adequate countermeasures.
However, user operations are not equally protected. As we have
seen, even critical operations, such as password change, are ex-
posed to severe attacks leading to customer account takeover. We
speculate that this may be the result of an inadequate or incomplete
risk analysis and threat modeling during the design phase.
Operation-based Protections: As opposed to the previous case, the
distinction is not based on the role of the user, but on the type of
operation. In general, web applications o�er operations to create,
delete, and update elements in a database. Elements can be anything
including users, contacts, and products. In Mautic, we observed that
creation and updating are guarded by anti-CSRF tokens. Deemon
veri�ed that when a token is omitted, a test fails. Similarly for the
cases of AbanteCart and OpenCart, this behavior shows that the
developers may be aware of the security risks. However, deletion
operations are not protected, allowing attackers to compromise
the database. In contrast to role-based protections, this may not be
caused by inadequate threat modeling. We believe that developers
just overlooked this operation.

10 DISCUSSION AND FUTUREWORK

Scalability of the Model—Our assessment showed that a modern
workstation can e�ciently handle a single graph database instance
with three million nodes. We believe that this would be an average
use case of our tool. However, property graphs can scale to hundreds
of millions of nodes [3]. In these scenarios, Deemon can also be
run on servers, exploiting the availability of additional hardware
resources.

Performance—The main bottleneck of our approach is the interac-
tion with a running web application. In our experiments, we used
one virtual machine at a time, but, we plan to improve performance
by spawning parallel, multiple virtual machine instances of the
same web application.

Generality of the Approach—Our evaluation was conducted on
PHP-based web applications using a MySQL database. While these
are popular among web developers, web applications can use dif-
ferent SQL databases or can be written in other programming lan-
guages. The modeling framework is independent from the program-
ming language. However, instrumentation and sensors may require
new connectors in order to acquire traces.

Detection Power—Deemon was conceived to target aCSRF. How-
ever, as for CSRF, other classes of severe vulnerabilities have been

neglected by the security community, e.g., session management
issues and race conditions. The lowest common denominator of
these classes is that they are much more complex to detect when
compared to XSS and SQLi. The detection of these classes require
learning in-depth behaviors of a program and synthesizing the
relevant aspects in models. From this point of view, our modeling
paradigm has to be seen as an initial e�ort toward this long-term
goal. Deemon provides a uni�ed representation for artifacts and
models used in dynamic analysis, and furthermore, it provides a
semantic of the relationships between them. However, our repre-
sentation may not be su�cient to capture relevant aspects for the
detection of other classes of vulnerabilities.

11 RELATEDWORK
To the best of our knowledge, this is the �rst work proposing a
technique for the detection of aCSRF vulnerabilities. Existing work
focused mainly on defense techniques, proposing new HTTP head-
ers (See, e.g., [6, 20, 21, 25]) and new CSRF-based attacks (e.g., [38]).
As opposed to these works, Deemon does not protect from exploita-
tion, but it allows discovery of CSRF during the testing phase of
the development of web applications.

Property Graphs and Vulnerability Detection—Our approach
relies on graph databases for the representation and composition
of models. Similar to our idea, Yamaguchi et al. [42] and Backes et
al. [3] combined di�erent code representations in a property graph.
While these works focused on static source code representations,
we model dynamic behaviors of the application. Furthermore, these
works, similarly to others in the area of web security, focused on
input validation vulnerabilities. In contrast, our work presented a
technique to discover aCSRF.

Dynamic Analysis—Research on dynamic analysis has been very
active over the last decade, proposing new techniques and tools to
detect a variety of vulnerabilities. For example, unsupervised web
application scanners are very popular tools routinely used to detect
vulnerabilities in web applications. Starting from a URL, a web ap-
plication scanner crawls a web application and then, for each discov-
ered input, it probes the application with crafted input strings. There
are plenty of commercial and non-commercial scanners, including
tools proposed by the research community [10, 17, 23, 27, 33]).
While web scanners are e�ective in the detection of XSS and SQLi,
they still perform poorly or even fail in the detection of more so-
phisticated vulnerabilities, including aCSRF vulnerabilities [7, 11].
Compared to web scanners, Deemon does not include a crawler com-
ponent. Crawlers use breadth- or depth-�rst algorithms which are
not adequate to reach security-relevant state-changing requests.
As opposed to this technique, Deemon—similarly to other dynamic
approaches (See, e.g., [26, 32])—follows a di�erent approach in
which input traces are used to explore in depth the functionalities
of web applications. Other approaches have been proposed in or-
der to address more complex �aws, e.g., user authentication (see,
e.g., [4, 44]), and logic vulnerabilities (e.g., [32]), often combining
model inference with dynamic testing. These approaches analyze
components and functionalities that are speci�c to the vulnerability
being targeted, thus making them inherently limited in the ability
to reason about the presence of CSRF vulnerabilities.



Static Analysis—Static program analysis has been used to detect
several classes of vulnerabilities, e.g., input validation vulnera-
bilities [3, 9, 18, 22], authorization vulnerabilities [28], and logic
�aws [39]. Similarly as for dynamic techniques, none of the existing
approaches target CSRF vulnerabilities. Second, more and more
web applications tend to use programming languages and coding
patterns, e.g., runtime second-order function calls [14, 15] and SQL
query construction [1], that are hard to treat statically. Static an-
alyzers often address these shortcomings by calculating over- or
under-approximations that can cause high rates of false positives [3].
In these scenarios, dynamic techniques such as Deemon are a valid
alternative; however, existing approaches lack the sophistication to
detect CSRF.

12 CONCLUSION
We presented Deemon, to the best of our knowledge the �rst security
testing framework that can detect aCSRF vulnerabilities. At the core
of Deemon is a new modeling paradigm based on property graphs
that de�nes (i) searchable model components to represent multiple
aspects of web applications, and (ii) a query language that allows
expression of suspicious or vulnerable behaviors. Our experiments
detected 14 severe aCSRF vulnerabilities a�ecting four web appli-
cations that can be used to take over websites, or user accounts,
and compromise database integrity. Finally, we assessed the current
awareness level of the aCSRF vulnerabilities and showed alarming
behaviors in which security-sensitive operations are protected in
a selective manner. This work has successfully demonstrated the
capabilities of our paradigm, which comprehensively captures non-
trivial, cross-tier aspects of modern web applications. In the near
future, we intend to leverage the opportunities provided by our
paradigm and extend the approach towards additional vulnerability
classes.

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their valuable
feedback and our shepherd Adam Doupé for his support in ad-
dressing reviewers’ comments. We would like also to thank Benny
Rolle and Florian Loch for their contribution to the development
of Deemon. This work was supported by the German Federal Min-
istry of Education and Research (BMBF) through funding for the
Center for IT-Security, Privacy and Accountability (CISPA) (FKZ:
16KIS0345, 16KIS0656), the CISPA-Stanford Center for Cybersecu-
rity (FKZ: 13N1S0762), and the project BOB (FKZ: 13N13250).

REFERENCES
[1] David Anderson and Mark Hills. 2017. Query Construction Patterns in PHP. In

IEEE 24th International Conference on Software Analysis, Evolution and Reengi-
neering, SANER 2017, Klagenfurt, Austria, February 20-24, 2017. 452–456. DOI:
https://doi.org/10.1109/SANER.2017.7884652

[2] Marc Andreessen. 1993. proposed new tag: IMG. [Posting to the www-talk
mailing list], http://1997.webhistory.org/www.lists/www-talk.1993q1/0182.html.
(February 1993).

[3] Michael Backes, Konrad Rieck, Malte Skoruppa, Ben Stock, and Fabian Yamaguchi.
2017. E�cient and Flexible Discovery of PHP Application. In 2nd European
Symposium on Security & Privacy (EuroS&P 2017) (to appear).

[4] Guangdong Bai, Jike Lei, Guozhu Meng, Sai Sathyanarayan Venkatraman, Prateek
Saxena, Jun Sun, Yang Liu, and Jin Song Dong. 2013. AUTHSCAN: Automatic
Extraction of Web Authentication Protocols from Implementations. In 20th An-
nual Network and Distributed System Security Symposium, NDSS 2013, San Diego,
California, USA, February 24-27, 2013.

[5] A. Barth. 2011. The Web Origin Concept. RFC 6454 (Proposed Standard). (Dec.
2011). http://www.ietf.org/rfc/rfc6454.txt

[6] Adam Barth, Collin Jackson, and John C. Mitchell. 2008. Robust Defenses for
Cross-site Request Forgery. In Proceedings of the 15th ACM Conference on Com-
puter and Communications Security (CCS ’08). ACM, New York, NY, USA, 75–88.
DOI:https://doi.org/10.1145/1455770.1455782

[7] Jason Bau, Elie Bursztein, Divij Gupta, and John Mitchell. 2010. State of the
Art: Automated Black-Box Web Application Vulnerability Testing. In 2010 IEEE
Symposium on Security and Privacy. 332–345. DOI:https://doi.org/10.1109/SP.
2010.27

[8] Bitnami. 2016. Bitnami Applications. (2016). https://bitnami.com/stacks
[9] Johannes Dahse and Thorsten Holz. 2014. Static Detection of Second-Order

Vulnerabilities in Web Applications. In 23rd USENIX Security Symposium (USENIX
Security 14). USENIX Association, San Diego, CA, 989–1003.

[10] Adam Doupé, Ludovico Cavedon, Christopher Kruegel, and Giovanni Vigna.
2012. Enemy of the State: A State-Aware Black-Box Web Vulnerability Scanner.
In Presented as part of the 21st USENIX Security Symposium (USENIX Security 12).
USENIX, Bellevue, WA, 523–538.

[11] Adam Doupé, Marco Cova, and Giovanni Vigna. 2010. Why Johnny Can’T
Pentest: An Analysis of Black-box Web Vulnerability Scanners. In Proceedings
of the 7th International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment (DIMVA’10). Springer-Verlag, Berlin, Heidelberg, 111–
131.

[12] Dave Ferguson. 2009. Net�ix CSRF Revisited. [online], http://appsecnotes.
blogspot.de/2009/01/net�ix-csrf-revisited.html. (January 2009).

[13] Robert M. Hierons, Kirill Bogdanov, Jonathan P. Bowen, Rance Cleaveland,
John Derrick, Jeremy Dick, Marian Gheorghe, Mark Harman, Kalpesh Kapoor,
Paul Krause, Gerald Lüttgen, Anthony J. H. Simons, Sergiy Vilkomir, Martin R.
Woodward, and Hussein Zedan. 2009. Using Formal Speci�cations to Sup-
port Testing. ACM Comput. Surv. 41, 2, Article 9 (Feb. 2009), 76 pages. DOI:
https://doi.org/10.1145/1459352.1459354

[14] Mark Hills. 2015. Evolution of dynamic feature usage in PHP. In 22nd IEEE
International Conference on Software Analysis, Evolution, and Reengineering,
SANER 2015, Montreal, QC, Canada, March 2-6, 2015. 525–529. DOI:https:
//doi.org/10.1109/SANER.2015.7081870

[15] Mark Hills, Paul Klint, and Jurgen J. Vinju. 2013. An empirical study of PHP fea-
ture usage: a static analysis perspective. In International Symposium on Software
Testing and Analysis, ISSTA ’13, Lugano, Switzerland, July 15-20, 2013. 325–335.
DOI:https://doi.org/10.1145/2483760.2483786

[16] John E. Hopcroft, Rajeev Motwani, and Je�rey D. Ullman. 2006. Introduction to
Automata Theory, Languages, and Computation (3rd Edition). Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA.

[17] Yao-Wen Huang, Chung-Hung Tsai, Tsung-Po Lin, Shih-Kun Huang, D. T. Lee,
and Sy-Yen Kuo. 2005. A Testing Framework for Web Application Security
Assessment. Comput. Netw. 48, 5 (Aug. 2005), 739–761. DOI:https://doi.org/10.
1016/j.comnet.2005.01.003

[18] Yao-Wen Huang, Fang Yu, Christian Hang, Chung-Hung Tsai, Der-Tsai Lee,
and Sy-Yen Kuo. 2004. Securing Web Application Code by Static Analysis and
Runtime Protection. In Proceedings of the 13th International Conference on World
Wide Web (WWW ’04). ACM, New York, NY, USA, 40–52. DOI:https://doi.org/
10.1145/988672.988679

[19] Martin Johns. 2007. The three faces of CSRF. talk at the DeepSec2007
conference, https://deepsec.net/archive/2007.deepsec.net/speakers/index.html#
martin-johns. (November 2007).

[20] Martin Johns and Justus Winter. RequestRodeo: client side protection against
session riding. In in Proceedings of the OWASP Europe 2006 Conference, refereed
papers track, Report CW448. 5–17.

[21] Nenad Jovanovic, Engin Kirda, and Christopher Kruegel. 2006. Preventing Cross
Site Request Forgery Attacks.. In SecureComm. IEEE, 1–10.

[22] Nenad Jovanovic, Christopher Kruegel, and Engin Kirda. 2006. Pixy: A Static
Analysis Tool for Detecting Web Application Vulnerabilities (Short Paper). In
Proceedings of the 2006 IEEE Symposium on Security and Privacy (SP ’06). IEEE
Computer Society, Washington, DC, USA, 258–263. DOI:https://doi.org/10.1109/
SP.2006.29

[23] Stefan Kals, Engin Kirda, Christopher Kruegel, and Nenad Jovanovic. 2006. Se-
cuBat: A Web Vulnerability Scanner. In Proceedings of the 15th International
Conference on World Wide Web (WWW ’06). ACM, New York, NY, USA, 247–256.
DOI:https://doi.org/10.1145/1135777.1135817

[24] Florian Kerschbaum. 2007. Simple cross-site attack prevention. In 2007 Third
International Conference on Security and Privacy in Communications Networks
and the Workshops - SecureComm 2007. 464–472. DOI:https://doi.org/10.1109/
SECCOM.2007.4550368

[25] Ziqing Mao, Ninghui Li, and Ian Molloy. 2009. Defeating Cross-Site Request
Forgery Attacks with Browser-Enforced Authenticity Protection. Springer Berlin
Heidelberg, Berlin, Heidelberg, 238–255.

[26] Sean Mcallister, Engin Kirda, and Christopher Kruegel. 2008. Leveraging User
Interactions for In-Depth Testing of Web Applications. In Proceedings of the

https://doi.org/10.1109/SANER.2017.7884652
http://1997.webhistory.org/www.lists/www-talk.1993q1/0182.html
http://www.ietf.org/rfc/rfc6454.txt
https://doi.org/10.1145/1455770.1455782
https://doi.org/10.1109/SP.2010.27
https://doi.org/10.1109/SP.2010.27
https://bitnami.com/stacks
http://appsecnotes.blogspot.de/2009/01/netflix-csrf-revisited.html
http://appsecnotes.blogspot.de/2009/01/netflix-csrf-revisited.html
https://doi.org/10.1145/1459352.1459354
https://doi.org/10.1109/SANER.2015.7081870
https://doi.org/10.1109/SANER.2015.7081870
https://doi.org/10.1145/2483760.2483786
https://doi.org/10.1016/j.comnet.2005.01.003
https://doi.org/10.1016/j.comnet.2005.01.003
https://doi.org/10.1145/988672.988679
https://doi.org/10.1145/988672.988679
https://deepsec.net/archive/2007.deepsec.net/speakers/index.html#martin-johns
https://deepsec.net/archive/2007.deepsec.net/speakers/index.html#martin-johns
https://doi.org/10.1109/SP.2006.29
https://doi.org/10.1109/SP.2006.29
https://doi.org/10.1145/1135777.1135817
https://doi.org/10.1109/SECCOM.2007.4550368
https://doi.org/10.1109/SECCOM.2007.4550368


11th International Symposium on Recent Advances in Intrusion Detection (RAID
’08). Springer-Verlag, Berlin, Heidelberg, 191–210. DOI:https://doi.org/10.1007/
978-3-540-87403-4_11

[27] Ali Mesbah, Arie van Deursen, and Stefan Lenselink. 2012. Crawling Ajax-
Based Web Applications Through Dynamic Analysis of User Interface State
Changes. ACM Trans. Web 6, 1, Article 3 (March 2012), 30 pages. DOI:https:
//doi.org/10.1145/2109205.2109208

[28] Maliheh Monshizadeh, Prasad Naldurg, and V. N. Venkatakrishnan. 2014. MACE:
Detecting Privilege Escalation Vulnerabilities in Web Applications. In Proceedings
of the 2014 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’14). ACM, New York, NY, USA, 690–701. DOI:https://doi.org/10.1145/
2660267.2660337

[29] Neo Technology, Inc. 2017. The Cypher Query Language. (2017). http://tinkerpop.
apache.org/

[30] OWASP. 2017. OWASP Testing Guide v4. (2017). https://www.owasp.org/index.
php/OWASP_Testing_Project

[31] OWASP. 2017. The OWASP Top 10 Project (from 2007 to 2013). (2017). https:
//www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

[32] Giancarlo Pellegrino and Davide Balzarotti. 2014. Toward Black-Box Detection
of Logic Flaws in Web Applications. In 21st Annual Network and Distributed
System Security Symposium, NDSS 2014, San Diego, California, USA, February
23-26, 2014.

[33] Giancarlo Pellegrino, Constantin Tschürtz, Eric Bodden, and Christian Rossow.
2015. jÄk: Using Dynamic Analysis to Crawl and Test Modern Web Applications.
Springer International Publishing, Cham, 295–316. DOI:https://doi.org/10.1007/
978-3-319-26362-5_14

[34] Petko D. Petkov. 2007. Google GMail E-Mail Hijack Technique. (2007). http:
//www.gnucitizen.org/blog/google-gmail-e-mail-hijack-technique/

[35] Derick Rethans. 2017. Xdebug Extension for PHP. (2017). https://xdebug.org/

[36] Thomas Schreiber. 2004. Session Riding - A Widespread Vulnerability in Today’s
Web Applications. (2004). http://www.securenet.de/papers/Session_Riding.pdf

[37] Selenium Committers. 2017. SeleniumHQ. (2017). http://www.seleniumhq.org/
[38] Avinash Sudhodanan, Roberto Carbone, Luca Compagna, Nicolas Dolgin,

Alessandro Armando, and Umberto Morelli. 2017. Large-Scale Analysis & De-
tection of Authentication Cross-Site Request Forgeries. In 2017 IEEE European
Symposium on Security and Privacy, EuroS&P 2017, Paris, France, April 26-28, 2017.
350–365. DOI:https://doi.org/10.1109/EuroSP.2017.45

[39] Fangqi Sun, Liang Xu, and Zhendong Su. 2014. Detecting Logic Vulnerabilities
in E-commerce Applications. In 21st Annual Network and Distributed System
Security Symposium, NDSS 2014, San Diego, California, USA, February 23-26, 2014.

[40] Anne van Kesteren, Julian Aubourg, Jungkee Song, and Hallvord R. M. Steen. 2016.
XMLHttpRequest Level 1. (2016). https://www.w3.org/TR/XMLHttpRequest/

[41] Rui Wang, Shuo Chen, and XiaoFeng Wang. 2012. Signing Me Onto Your Ac-
counts Through Facebook and Google: A Tra�c-Guided Security Study of Com-
mercially Deployed Single-Sign-On Web Services. In Proceedings of the 2012 IEEE
Symposium on Security and Privacy (SP ’12). IEEE Computer Society, Washington,
DC, USA, 365–379. DOI:https://doi.org/10.1109/SP.2012.30

[42] Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck. 2014. Modeling
and Discovering Vulnerabilities with Code Property Graphs. In Proceedings of the
2014 IEEE Symposium on Security and Privacy (SP ’14). IEEE Computer Society,
Washington, DC, USA, 590–604. DOI:https://doi.org/10.1109/SP.2014.44

[43] William Zeller and Edward W. Felten. 2008. Cross-Site Request Forgeries: Ex-
ploitation and Prevention. (2008). http://www.cs.utexas.edu/~shmat/courses/
cs378/zeller.pdf

[44] Yuchen Zhou and David Evans. 2014. SSOScan: Automated Testing of Web
Applications for Single Sign-on Vulnerabilities. In Proceedings of the 23rd USENIX
Conference on Security Symposium (SEC’14). USENIX Association, Berkeley, CA,
USA, 495–510. http://dl.acm.org/citation.cfm?id=2671225.2671257

https://doi.org/10.1007/978-3-540-87403-4_11
https://doi.org/10.1007/978-3-540-87403-4_11
https://doi.org/10.1145/2109205.2109208
https://doi.org/10.1145/2109205.2109208
https://doi.org/10.1145/2660267.2660337
https://doi.org/10.1145/2660267.2660337
http://tinkerpop.apache.org/
http://tinkerpop.apache.org/
https://www.owasp.org/index.php/OWASP_Testing_Project
https://www.owasp.org/index.php/OWASP_Testing_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://doi.org/10.1007/978-3-319-26362-5_14
https://doi.org/10.1007/978-3-319-26362-5_14
http://www.gnucitizen.org/blog/google-gmail-e-mail-hijack-technique/
http://www.gnucitizen.org/blog/google-gmail-e-mail-hijack-technique/
https://xdebug.org/
http://www.securenet.de/papers/Session_Riding.pdf
http://www.seleniumhq.org/
https://doi.org/10.1109/EuroSP.2017.45
https://www.w3.org/TR/XMLHttpRequest/
https://doi.org/10.1109/SP.2012.30
https://doi.org/10.1109/SP.2014.44
http://www.cs.utexas.edu/~shmat/courses/cs378/zeller.pdf
http://www.cs.utexas.edu/~shmat/courses/cs378/zeller.pdf
http://dl.acm.org/citation.cfm?id=2671225.2671257

	Abstract
	1 Introduction
	2 Cross-site Request Forgery (CSRF)
	3 Challenges in Detecting aCSRF
	3.1 Detection Challenges
	3.2 Operational Challenges

	4 Deemon: Overview
	4.1 Preparation
	4.2 Instrumentation
	4.3 Detection

	5 Modeling
	5.1 Labeled Property Graph
	5.2 Model Construction

	6 Model Mining and Test Execution
	6.1 Test Generation
	6.2 Security Tests

	7 Evaluation
	7.1 Testbed
	7.2 Instrumentation
	7.3 User Actions Input Trace
	7.4 Dynamic Traces Generation
	7.5 Performance
	7.6 Detection of aCSRF

	8 Results
	8.1 Exploitable Vulnerabilities
	8.2 Non-Exploitable Tests

	9 Analysis
	10 Discussion and Future Work
	11 Related Work
	12 Conclusion
	References

