
Geo-locating Drivers: A Study of Sensitive Data
Leakage in Ride-Hailing Services

Qingchuan Zhao∗, Chaoshun Zuo∗, Giancarlo Pellegrino†‡, Zhiqiang Lin∗

∗The Ohio State University
†CISPA Helmholtz Center for Information Security

‡Stanford University
{zhao.2708, zuo.118, lin.3021}@osu.edu, gpellegrino@{cispa.saarland, stanford.edu}

Abstract—Increasingly, mobile application-based ride-hailing
services have become a very popular means of transportation.
Due to the handling of business logic, these services also contain
a wealth of privacy-sensitive information such as GPS locations,
car plates, driver licenses, and payment data. Unlike many of
the mobile applications in which there is only one type of users,
ride-hailing services face two types of users: riders and drivers.
While most of the efforts had focused on the rider’s privacy,
unfortunately, we notice little has been done to protect drivers.
To raise the awareness of the privacy issues with drivers, in
this paper we perform the first systematic study of the drivers’
sensitive data leakage in ride-hailing services. More specifically,
we select 20 popular ride-hailing apps including Uber and Lyft
and focus on one particular feature, namely the nearby cars
feature. Surprisingly, our experimental results show that large-
scale data harvesting of drivers is possible for all of the ride-
hailing services we studied. In particular, attackers can determine
with high-precision the driver’s privacy-sensitive information
including mostly visited address (e.g., home) and daily driving be-
haviors. Meanwhile, attackers can also infer sensitive information
about the business operations and performances of ride-hailing
services such as the number of rides, utilization of cars, and
presence on the territory. In addition to presenting the attacks,
we also shed light on the countermeasures the service providers
could take to protect the driver’s sensitive information.

I. INTRODUCTION

Over the last decade, ride-hailing services such as Uber and
Lyft have become a popular means of ground transportation
for millions of users [34], [33]. A ride-hailing service (RHS) is
a platform serving for dispatching ride requests to subscribed
drivers, where a rider requests a car via a mobile application
(app for short). Riders’ requests are forwarded to the closest
available drivers who can accept or decline the service request
based on the rider’s reputation and position.

To operate, RHSes typically collect a considerable amount
of sensitive information such as GPS position, car plates,
payment data, and other personally identifiable information
(PII) of both drivers and riders. The protection of these data is
a growing concern in the community especially after the pub-

lication of documents describing questionable and unethical
behaviors of RHSes [18], [8].

Moreover, a recent attack presented by Pham et al. [30]
has shown the severity of the risk of massive sensitive data
leakage. This attack could allow shady marketers or angry taxi-
cab drivers to obtain drivers’ PII by leveraging the fact that
the platform shares personal details of the drivers including
driver’s name and picture, car plate, and phone numbers upon
the confirmation of a ride. As a result, attackers could harvest
a significant amount of sensitive data by requesting and can-
celing rides continuously. Accordingly, RHSes have adopted
cancellations policy to penalize such behaviors, but recent
reported incidents have shown that current countermeasures
may not be sufficient to deter attackers (e.g., [15], [5]).

Unfortunately, the above example attack only scratches the
tip of the iceberg. In fact, we find that the current situation
exposes drivers’ privacy and safety to an unprecedented risk,
which is much more disconcerting, by presenting 3 attacks that
abuse the nearby cars feature of 20 rider apps. In particular,
we show that large-scale data harvesting from ride-haling
platforms is still possible that allows attackers to determine
a driver’s home addresses and daily behaviors with high
precision. Also, we demonstrate that the harvested data can
be used to identify drivers who operate on multiple platforms
as well as to learn significant details about an RHS’s operation
performances. Finally, we show that this is not a problem
isolated to just a few RHSes, e.g., Uber and Lyft, but it is
a systematic problem affecting all platforms we tested.

In this paper, we also report the existing countermeasures
from the tested RHSes. We show that countermeasures such
as rate limiting and short-lived identifiers are not sufficient
to address our attacks. We also present new vulnerabilities in
which social security numbers and other confidential infor-
mation are shared with riders exist in some of the RHSes we
tested. We have made responsible disclosures to the vulnerable
RHS providers (received bug bounties from both Uber and
Lyft), and are working with them to patch the vulnerabilities
at the time of this writing.

Finally, to ease the analysis efforts, we have developed a
semi-automated and lightweight web API reverse engineering
tool to extract undocumented web APIs and data dependencies
from a mobile app. These reversed engineered web APIs are
then used to develop the security tests in our analysis.
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Figure 1: An overview of the web APIs used by RHSes.

Our Contribution. To summarize, this paper makes the fol-
lowing contribution:

• Novel Attacks (§V). We present new attacks that are
able to extract the privacy sensitive data (some of which
can even lead to threat to drivers safety) of ride-hailing
drivers. We collect a large volume of data using the nearby
cars feature and show that we can determine their home
address and other personal behaviors with high precision.
We also show that the analysis can reveal information
about an RHS’s business performances.

• New Tool (§III). As the web APIs in our analysis are
typically undocumented, we present a novel lightweight
dynamic analysis tool to reverse engineer the web APIs
and perform our security tests.

• Empirical Evaluation (§IV). We present an analysis of
Nearby Cars web APIs from 20 RHSes and assess the
effectiveness of existing countermeasures.

• Countermeasures (§VI). Finally, we also present a list of
dos and donts, and discuss more robust countermeasures
for protecting driver’s privacy in RHSes.

Paper Organization. The rest of the paper is organized as
follows. We first provide necessary background in §II and
introduce our tool and methodologies for conducting this study
in §III. Next, we show the results of our analysis over the
web APIs of our interest in §IV, and present three carefully
designed attacks in §V. We then discuss our findings and
possible countermeasures against our attacks in §VI, and
compare with related works in §VII. Finally, we conclude in
§VIII.

II. BACKGROUND

A. About RHSes

Ride-hailing is an emerging mode of ground transportation
that a rider can reserve a car service using a mobile app.
In general, it works as follows. When the rider inputs a
destination address and requests a ride, the mobile app reads
the GPS position of the device and transmits it together with
the address to the back-end server. Then the server dispatches
the request to the available drivers closer to the rider. If an
available driver accepts the request, then the server transmits

GET /nearby-cars?lat=33.7114&lng=151.1321 
HTTP/1.1
…

HTTP/1.1 200 OK
Content-type: application/json
...

{
"cars": [

{
"id"   : "509AE827",
"positions": [

{
"GPS": "-33.7100 / 151.1342",
"t"  : "15259620050000"

},  {
"GPS": "-33.7300 / 151.1200",
"t"  : "15259620060000"

},
...

}, {
"id"   : "6F09E2AA",
...

},  
...   

}

Figure 2: An example of a rider request and response message.

additional information to both the driver (e.g., the pickup
location) and the rider (e.g., the estimated time of arrival).

The ride-hailing market is flourishing over the past several
years, and many companies have entered this business follow-
ing the path mapped by Curb, Flywheel, and Uber. Despite
the rich variety of offerings, the underlying architectures
connecting riders to drivers are very similar to each other. An
overview of the most important protocols for such services is
shown in Figure 1. In particular, an RHS system is composed
of: (i) a mobile app for the rider (rider app), (ii) a cloud of
back-end servers, and (iii) a mobile app for the driver (driver
app). The rider app is used by customers to request rides. It
is connected over the Internet to a cloud of back-end servers
that are responsible to authenticate riders (and drivers), and to
match riders to drivers. And, the driver app is used by drivers
exclusively.

The communication between back-end servers and mobile
apps is typically via web APIs—HTTP-based1 app program-
ming interfaces to execute remote functions. Figure 1 shows
five examples of web APIs supporting the basic operations of
RHSes:

• Driver Real-time Position: The driver app sends a
feed of available positions of drivers to the server. The
collected positions will later be used by the server to
dispatch riders’ requests to available drivers;

• Login: The Login API is responsible for authenticating
users, i.e., both riders and drivers. The mobile app collects
username and password of the rider (or the driver), and
sends it via an HTTP request to the server. If the authen-
tication succeeds, the server produces an authenticated
token that will be used by the mobile app as a mean
of authentication proof when sending subsequent HTTP
requests.

• Refresh Token: Typically, a token can only be used in a
limited time window. The Refresh Token API is used to
retrieve a new token from the server when the old one
expired.

1HTTPS protocols are similarly handled with the only difference of either at
the networking API interception or with a packet decryption using a controlled
proxy.
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• Nearby Cars: The forth API is used by the rider app
to obtain information about nearby cars and a quote of
the cost of the ride. Figure 1 shows an example of this
API with the request and response message. The request
message carries the rider’s location and the response mes-
sage contains several nearby cars. Each car has at least an
identifier (id), the position information, which includes
the GPS coordinates and the time stamp indicating when
such position is recorded.

• Ride Request: The last API is used to request a ride
and spawns across the three entities. It is initiated by the
rider when requesting a ride for a specific destination.
The server will determine the closest drivers to the rider’s
current position and ask them if they would accept the
ride. If so, the server assigns the first responded driver to
the rider, and sends to the rider app the details about the
ride.

RHSes may provide additional services and APIs that
are not shown in Figure 1, such as billing information for
customers and APIs to integrate with other third-party services
(e.g., Google Maps).

B. Motivation and Threat Model

Motivation. The motivation of our work is based on a serious
attack against drivers of RHSes. To the best of our knowledge,
one of the first few attacks threatening the safety of drivers has
been presented by Pham et al. [30] as a part of a broader study
on privacy threats in RHSes. In this attack, the attacker is a
group of angry taxi-cab drivers who wants to harm RHS drivers
coordinately. To do so, the attacker exploits the behavior of the
Request Ride API that returns drivers’ personal details. Based
on this behavior, the attacker collects drivers’ information by
requesting and canceling rides. While this threat may seem
implausible, a number of news reports is showing that physical
violence is a real threat to RHS drivers (e.g., [39], [10], [21],
[31]). On the other hand, RHS providers have begun to charge
penalties if users canceling rides. This policy increases the cost
for conducting such information collection, and mitigates the
attacks utilizing the Request Ride API.

However, despite the Request Ride API, we find that the
Nearby Cars API can also leak drivers’ information both
directly and indirectly. Nevertheless, it remains underestimated
and is rarely noticed by attackers and researchers. There might
be multiple reasons. The first reason is probably that, showing
the nearby cars is a common feature of apps in this category,
which brings directly to the users with vivid visual effects and
lets them realize how many available cars around them, in
order to estimate where they would better to move to catch
a car in a shorter time. This feature is provided by almost
every RHS app today, though different app may adopt different
strategy to display the nearby cars (e.g., using different radius).
The second possible reason is that, this API is not designed
to provide drivers’ information directly as what the Request
Ride API does, such as driver’s name, plate number, and
phone number. As a result, when designing RHS apps, the
app developers may intuitively provide this feature by default,
without challenging much about its security.

Therefore, in this paper, we intend to systematically study
the severity of the data leakages originated from this visual

Service Name #Downloads Obfuscated?

Uber 100+ millions 4
Easy 10+ millions 4
Gett 10+ millions 4
Lyft 10+ millions 4
myTaxi 5+ millions 4
Taxify 5+ millions 7
BiTaksi 1+ millions 4
Heetch 1+ millions 4
Jeeny 500+ thousands 4
Flywheel 100+ thousands 7
GoCatch 100+ thousands 4
miCab 100+ thousands 7
RideAustin 100+ thousands 7
Ztrip 100+ thousands 4
eCab 50+ thousands 4
GroundLink 10+ thousands 7
HelloCabs 10+ thousands 7
Ride LA 10+ thousands 7
Bounce 10+ thousands 7
DC Taxi Rider 5+ thousands 4

Table I: The selected RHSes in our study.

effect, which is brought by the execution of the Nearby Cars
API. To our surprise, we find that this feature can actually
cause a lot of damages to both the drivers and the platform
providers as well.

Threat Model. We assume the attacker is either a ride-hailing
service, an individual, or a group of persons. In addition, the
attacker can reverse engineer the rider app of RHSes, create
fake accounts, use GPS spoofing to forge user positions, and
control several machines connecting to the Internet.

III. METHODOLOGY AND TOOLS

A key objective of this work is to have a systematic under-
standing of the current circumstances of driver’s security issues
in RHSes by studying the related web APIs they exposed. To
this end, we intend to investigate the deployed countermeasures
or mechanisms that can prevent, increase the cost, or slow
down the acquisition of the GPS positions of drivers, and
meanwhile to understand whether such data leakage is a threat
to drivers’ privacy and RHS business. For this purpose, we
have to apply security tests over web APIs, which requires
proper descriptions of the web API end-points, parameters,
and API call sequences. Unfortunately, the documentation of
web APIs is not always available: out of the 20 mobile apps we
studied, only Lyft provides a description of the Nearby Cars
API2. To solve this problem, we need to design a tool for web
API reverse engineering.

In this section, we first describe how we select the RHSes
and their apps in §III-A, then present how we design our web
API reverse engineering tool in §III-B and its implementation
in §III-C.

A. Selection of the RHSes

We conducted our study on a selection of RHSes by
searching for the keyword “ride-hail” on Google Play Store
through a clean Chrome Browser instance and selecting the top
20 suggested apps that can be installed and run on our devices

2See "Availability - ETA and Nearby Drivers" https://developer.lyft.com/
reference
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POST /oauth2/access_token HTTP/1.1
grant_type = ***Aphone & 
phone_number = 123 & phone_code = 111 

HTTP/1.1 200 OK

Content-type: application/json
{

"access_token": "eHdNsgsNvREH1",
"expires_in": 86400,
"refresh_token": "bEwazc0wcI",

}

POST /oauth2/access_token HTTP/1.1
grant_type=refresh_token &
refresh_token=bEwazc0wcI

HTTP/1.1 200 OK

Content-type: application/json
{

"access_token": "dmGtpMx1qCKeA",
"expires_in": 86400,
"refresh_token": "3Rva2VuIiw",

}

GET /v1/nearby-drivers-pickup-etas?
lat=10.10&lng=-10.10 HTTP/1.1
Authorization: Bearer dmGtpMx1qCKeA

HTTP/1.1 200 OK

Content-type: application/json
{

"nearby_drivers":[ 
{

...
"driver":{

...
},
"locations":[ 

{
"lat":10.10,
"lng":-10.10,
"recorded_at_ms":1234

},
... 

]
},
{

...
"driver":{

...
}, 

...
}

(a) Login API

(c) Nearby Cars API(b) Refresh Token API

Figure 3: The web APIs and dependencies in Lyft.

on the date of April 3rd, 2018. The selected apps are listed in
Table III. Please note that these search engine suggested apps
were determined by Google on that particular day, and these
apps may not be the top downloaded apps. While we could
have just used the top 20 RHS apps based on the number of
accumulated downloads in Google Play, the reason of using
the suggested RHS apps returned by the search engine is to
get a fairly reasonable distribution of these apps.

Then we investigate some general properties of our apps.
First, we estimated their popularity by using the number of
downloads provided by the Google Play Store, which shows
that our apps vary from the world-wide known Uber and Lyft
to local services such as RideAustin and RideLA. Further, we
looked into details about whether the mobile app has been
obfuscated to thwart the app analysis, which is useful for
the development of our web API reverse engineering tool. To
do so, we manually examined each app’s binary code with
the help of the tool JEB3 and found that 12 out 20 apps
(60%) have been obfuscated, which makes static analysis of
the app challenging. Meanwhile, we also examined the apps’
communication security by setting up a man-in-the-middle
proxy with customized certificates and we found only Uber
enforces the certificate checking.

B. Reverse Engineering of the Web APIs

Running Example. We begin the description of our tool with
a running example to illustrate the problems we have to solve
for extracting the Nearby Cars API and all of its related
APIs. These APIs are required to be executed correctly in a
systematic manner to generate our security test results. The
running example is from a real app, Lyft.

When opening the Lyft app to use its services, the rider will
be asked to provide a phone number to receive a verification
code sent from the back-end server via SMS. After providing
this verification code, the app invokes the Login API, which is
shown in Figure 3(a), where the phone number and the verifi-
cation code are carried by the parameter phone_number and
phone_code, respectively. It receives the access_token,
which will be expired in 86, 400 seconds as well as the

3Available at https://www.pnfsoftware.com/jeb/

refresh_token, which is used later to require a new token
when the current one expired.

At the time of a successful login, Lyft triggers the Nearby
Cars API automatically. As shown in Figure 3(c), the Nearby
Cars API requires three important fields: lat, lng, and
Authorization, where lat and lng represents the user’s
geo_location, and the Authorization carries the to-
ken value for the authorization purpose. After 86, 400 seconds,
the old token will be expired, then the app invokes the Refresh
Token API as shown in Figure 3(b). This API carries an
important parameter, refresh_token, whose value comes
from the response of the Login API. Next, the invoked Refresh
Token API receives the response from the server with a new
token, the value of access_token, as well as a new refresh
token. Later, this new token is carried within the Nearby Cars
API for continuously retrieving the data containing nearby
cars.

Challenges. From this running example, we can notice a
number of challenges we have to solve in order to perform
our security analysis.

• Pinpointing the Web APIs of Interest. An RHS client
app may involve multiple web APIs during the interaction
with the servers. For instance, the Uber app actually
triggers hundreds of web API calls. We must identify
the API of our interest, i.e., the Nearby Cars API. In-
terestingly, this API does take a parameter with value of
GPS coordinates. Identifying such a parameter is helpful
to narrow the scope to pinpoint this API.

• Identifying the Dependencies among APIs. The pa-
rameters of one web API can depend on the values
obtained from other APIs. For instance, the value of
access_token in Nearby Cars API comes from the re-
sponse of Refresh Token API. Therefore, we also have to
identify the closure of the web APIs related to the Nearby
Cars API. Obviously we have to perform a dependency
analysis of all of the executed web APIs.

• Bypassing Obfuscations Used in the Apps. We cannot
simply use static analysis to identify the web APIs,
because there are 60% of the RHS apps in our dataset that
have been obfuscation to thwart our analysis. Meanwhile,
as the security analysis involves retrieving nearby cars,
the access control token must be provided otherwise the
server will reject our requests. Therefore, we have to
choose dynamic analysis. In addition, we also cannot
simply setup a network proxy to intercept and decrypt
the HTTP(S) traffic, because one of the apps (i.e., Uber)
performs the certificate checking. Consequently, we have
to hook in-app APIs to intercept the network traffic.

Approaches. There are multiple approaches to solve the above
challenges. Intuitively, we can use instruction level dynamic
taint analysis (e.g., TaintDroid [13]) to understand how the
information flows through the app (e.g., how the GPS location
and the server response such as token is defined and used
by the web APIs) to pinpoint the web APIs of our interest
as well as to identify the dependencies. Such a dynamic
analysis approach also bypasses static code obfuscation and
can intercept the HTTPS traffic at the network API level.

4

https://www.pnfsoftware.com/jeb/


Interestingly, according to our preliminary analysis of these
20 apps, we also notice that we can use a lightweight API
level data dependency analysis instead of the heavyweight
instruction level data dependency analysis (i.e., taint analysis)
to solve our problem. In that, the parameters are mostly strings
and we can identify the dependencies by matching their values.
The only limitation for this approach is that we are unable to
identify the dependencies if a string is transformed between the
definition of the string and the use of the string. Fortunately,
we did not notice such a case in our RHS apps.

Therefore, we eventually design a lightweight, API level,
dynamic data dependency analysis that works in the following
three steps:

Step I: Logging Android and System APIs. First, we
instrument a large number of system APIs of our interest,
which includes (i) all of the HTTP(S) system libraries
(e.g., HttpClient) and low level (SSL)Socket APIs handling
third-party or self-developed libraries; (ii) the system
APIs that are required by Ride-Hailing services, such as
LocationManager.requestLocationUpdates(),
LocationManager.getLastKnownLocation(),
GPSTracker.getLatitude(), GPSTracker.get
Longitude(), and System.currentTimeMillis().
During the execution of these APIs, we log the name, the
parameters, and the return values of the system APIs in a log
file.

Step II: Resolving the Web APIs. Unlike the system APIs
whose name is documented, we do not have any name of
the web APIs because they are merely HTTP request and
response messages. On the other hand, these messages have
already been logged when the networking system APIs get
executed. Therefore, by inspecting the networking request and
response API execution information in the log file, we can pair
each request with its corresponding response, and then parse
these pairs according to the HTTP protocol specification [1]:
a request message includes 1) a request-line, 2) request header
fields, 3) an empty line, and 4) an optional message-body;
and a response message contains 1) a status-line, 2) response
header fields, 3) an empty line, and 4) an optional message-
body.

Specifically, we parse the request message to obtain the
request URL as well as request parameters and we also parse
the response messages to abstract its content as a set of pairs of
<field_name,value>. With respect to the parameters and
response value pairs, we parse them accordingly based on their
specific encodings (e.g., JSON and XML). Eventually, the web
API is resolved by the request URL, the request parameters,
and the return values (i.e., response message). Then, we replace
the log entires of the original network sending and receiving
APIs with the newly resolved web APIs in the log file.

Step III: Data Dependency Analysis. Then by analyzing the
log file in both forward and backward directions, we identify
the APIs of our interest and also dependencies. In particular:

• Forward Data Dependency Analysis. Starting from
the return values of the hooked system APIs (e.g.,
GPSTracker.getLongitude()), we search where

this value is used in the log file in the forward direction.
The web APIs that use the GPS coordinates in the request
parameters is the candidate of the Nearby Cars API.
Also, interestingly, the GPS coordinates will also be used
in the return values of the Nearby Cars API because
each nearby car also has a location. An example of this
response message is in shown in Figure 2, which is the
JSON formatted item in nearby cars array. Therefore,
to further narrow down the candidate, we also inspect the
response messages. If the GPS coordinates exist in the
response message, we identify this Nearby Cars API.

• Backward Data Dependency Analysis. Having identi-
fied the Nearby Cars API, we then search in a backward
direction to locate where the parameters of this API
are defined. Transitively, we identify the closure that
generates the parameters such as the access_token.
Note that to really identify whether a parameter is token,
we apply the same differential packet analysis [2] to infer
the tokens in the request message. The key observation is
that different users are assigned with different tokens, and
we can therefore align and diff their requests for the same
web API by using two different users. Such a protocol
alignment and diffing approach has been widely used by
many protocol reverse engineering systems (e.g., [2], [9],
[42], [43]), and we just use the one from the Protocol
Informatics (PI) project [2].

C. Implementation

We have implemented our analysis tool atop the Xposed [3]
framework, which allows the dynamic interception of all of the
Android APIs including system APIs. The execution of these
APIs is logged into a log file, in which each entry contains
the API name, the value of parameters, and return value.
To resolve the web APIs from the log file, we just develop
standard parsing with python scripts. In particular, we depend
on urllib, zlib, json, and xml python libraries to parse
and decode the content of the web API. Finally, to infer the
tokens in the request and response messages, we use the open
source message field alignment and diffing implementation
from PI [2].

The last piece of our tool is a standalone data scraping
component that is able to collect the nearby driver information
by sending a large volume of request messages to the RHS
server with proper parameters. With our web API reverse en-
gineering component, the implementation of this task becomes
quite simple. In particular, we just developed a python script
that sends HTTP(S) request messages to the servers by using
the token obtained in the web API reverse engineering and
mutating the GPS coordinates of our interest. If the token
requires refresh, we execute the refresh token API with proper
parameters as well. Please note that these parameters have
already been identified by our data dependency algorithm.

To summarize, for each analyzed RHS app, we first in-
stalled the app in an instrumented Android device where
most of the Android APIs are interposed and their executions
are logged. For each selected app, we also created two user
accounts for each service. Then, we performed a user login
request and reached the view where the cars are displayed
on a map, by using the two users we registered. Next, we
analyze the log file to resolve the web APIs of our interest and
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Rider App RL1 RL2 SM1 SM2 GPS AN1 AN2

Uber  #  ∞ # ∞  
Easy - # # ∞ # ∞  
Gett - #  ∞ # ∞  
Lyft  #  24h # ∞ #
myTaxi - # # ∞ # 20m  
Taxify  #  ∞ # ∞  
BiTaksi - #  ∞ # ∞  
Heetch - #  ∞ # ∞  
Jeeny - # # ∞ # 20m  
Flywheel - #  20m # 10m  
GoCatch - #  ∞ # ∞  
miCab - #  ∞ # ∞ #
RideAustin - #  ∞ # ∞  
Ztrip - #  30m # ∞  
eCab  # # ∞ # ∞  
GroundLink - # # ∞ # ∞  
HelloCabs - #  ∞ # ∞ #
Ride LA - # # ∞ # ∞ #
Bounce - #  ∞ # ∞ #
DC Taxi Rider - #  ∞ # ∞ #

Table II: List of countermeasures. Values:  for countermea-
sure present, # for countermeasure missing, "-" for unknown,
and ∞ for not expired. Columns: RL1 for Reqs/s, RL2 for
Different IPs, SM1 for Authn, SM2 for Session Life-Span,
GPS for Anti-GPS Spoofing, AN1 for Identifier Life-Span,
AN2 for Driver Info.

identify the dependencies. After that, we run our standalone
data scraping component to scrape the nearby cars. We refer
to §IV and §V for the description of the individual test of the
apps.

IV. SECURITY ANALYSIS OF NEARBY CARS API

We now present our security analysis of Nearby Cars APIs.
The goal of this analysis is to identify server-side mechanisms
and possible countermeasures that can block or slow down
the attacker’s operations. The list of the countermeasures is
presented in §IV-A and the analysis results are presented in
§IV-B.

A. Analysis Description

The first step of our analysis is to prepare a list of
countermeasures to evaluate. We reviewed publicly available
documents such as ride-hailing apps’ API documentation for
developers and the best practices for web service development4
to search for known countermeasures covering the following
categories: rate limiting, anti-GPS spoofing, session manage-
ment, data anonymization, and anti-data scraping. Table II
shows the list of countermeasures. In the rest of this section,
we discuss each category and provide details of our tests.

Rate Limiting. Rate limiting is a technique that is used to limit
the number of requests processed by online services, and it is
often used to counter denial of service (DoS) attacks. Based on
our threat model, the attacker can take advantage of multiple
computers to perform a large number of requests. Accordingly,
we considered two countermeasures: per-user rate limits on the

4See, the "OWASP REST Security Cheat Sheet" https://www.owasp.org/
index.php/REST_Security_Cheat_Sheet and the "OWASP Web Service Se-
curity Cheat Sheet" https://www.owasp.org/index.php/Web_Service_Security_
Cheat_Sheet

number of requests and per-user limits on the number of IPs
used.

(RL1) Rate Limits Reqs/s: Servers can limit the number
of requests processed over a period of time. The
rate limits can be enforced for each user or
web server. When the limit is reached, the web
server may respond with a “429 Too Many
Requests” response status. We populated this
column using the information we gathered from
the ride-hailing service documentations. Only
Uber and Lyft describe the rate limits based on
the frequency of requests per second and the total
amount of requests per user. The other services
do not share these details. However, during our
experiments, we discovered that Taxify and eCab
implement rate limits. Nevertheless, these limits
are enforced when administrators suspect under-
going malicious activities, e.g., DoS.

(RL2) Different IPs: RHSes may be recording the IPs
for every user who logs in as a measure to mit-
igate session hijacking attacks. When the server
detects a new IP, it may require the user to
be re-authenticated. To populate this column, we
checked the behavior of the server when process-
ing parallel requests from the same user session
using different source IPs. We used two sources:
an IP of the DigitalOcean Inc. network, and the
other of our own campus network.

Session Management. Session management encompasses the
mechanisms to establish and maintain a valid user session.
It includes user authentication, generation, and validation of
session identifiers. In this analysis, we focus on those aspects
that can limit attacker activities.

(SM1) Authentication: The first aspect we intend to
check is whether the access to Nearby Cars API is
restricted to the authenticated user only. We verify
this by checking for the presence of a session ID
in the Nearby Cars API request.

(SM2) Session Lifespan: The second aspect is the life-
span of user sessions that may slow down attack-
ers. For example, shorter validity time windows
may require the attacker to re-authenticated fre-
quently. We measure the session lifespan by call-
ing the Nearby Cars API over an extended period.
When we receive an error message, e.g., HTTP
response “4xx” series status code or a response
with a different response body format (e.g., keys
of JSON objects), we mark this session as expired.
We did not design ad-hoc experiments for that,
but we monitored errors during the experiments
of §V.

Anti-GPS Spoofing. The attacker spoofs GPS coordinates to
fetch nearby cars. As such, services may deploy mechanisms to
verify whether the GPS position is consistent with other mea-
surements, e.g., nearby WiFi networks and nearby cell towers5.
For this category, we do not enumerate and test possible

5See https://developer.android.com/guide/topics/location/strategies
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countermeasures, but we verify the presence of mechanisms
that would prevent an attacker from rapidly changing position
via GPS spoofing. For this test, we spoofed GPS coordinates
so that the users will appear in very distant places at the same
time. We first identified at least two cities where each ride-
hailing service operates. For example, for Lyft, we selected 11
cities and performed one request per second for each city for
twenty times. Four services, i.e., Bounce, RideAustin, RideLA,
and DC Taxi Rider, operate in a single city. In these cases, we
picked distant points within the same city.

Anonymization. This category contains countermeasures to
hide sensitive information and make it hard for an attacker
to reveal drivers’ identities. We derived this list by manually
inspecting the content of Nearby Cars API responses.

(AN1) Identifier Lifespan: As shown in Figure 2, the
Nearby Cars API’s responses carry identifiers for
either cars or drivers in most cases. In this study,
we assume each driver is binding to a unique
car, which means the identifier for a car and
for a driver is conceptually equivalent. These
identifiers can be used to track cars and drivers
across different responses. Shortening the lifespan
of identifiers may mitigate this problem. Then,
we tested the time it takes for an identifier to be
updated. As discussed for the session ID lifespan,
we measured the identifier lifespans during the
experiments of §V.

(AN2) Personally Identifiable Information: We inspect
the responses looking for personally identifiable
information. We looked for the first and last name,
email, phone numbers, and others.

B. Results

We now present the main results of our analysis. Results
are presented in Table II.

Rate Limiting. Uber, Lyft, and Gett are the only three services
provide publicly available API documentations. According to
Uber’s documentation, Uber enforces a limit of 2, 000 requests
per hour and a maximum peaks of 500 requests per second per
user. In our experiments, we observed that the real rate limit
is much lower, i.e., one request per second. As the Nearby
Cars API is undocumented, we speculated that this may be a
particular rate limit of the Nearby Cars API only. Lyft reports
the presence of rate limits; however, they do not disclose the
actual thresholds. Gett does not report the presence of rate
limits.

For Taxify and eCab, we discovered rate limits at about
two requests per second. These limits were not always present,
but they were enforced after they notified us about suspicious
traffic originated from our servers.

For the remaining RHSes, we did not identify rate limits.
As we elaborate more in §V, we requested on average about
four requests per second based on the insight gained with Uber,
Taxify, and eCab. Higher rate limits may be present, but we
did not verify their presence for ethical reasons. Finally, none
of the services enforce a same-origin network policy for user
requests.

Service name Sensitive information

Lyft Driver avatar
HelloCabs Name, phone number
Ride LA Name, phone number
DC Taxi Rider Name, phone number, email
miCab Account creating time, account last update time, device

number, hiring status
Bounce Name, date of birth, driver avatar, phone number, social

security number, driver license number, driver license ex-
piration date, home address, bank account number, routing
number, account balance, vehicle inspection details, vehicle
insurance details

Table III: List of personally identifiable information of drivers
included in Nearby Cars API responses

User Authentication. 14 services restrict the Nearby Cars
API to authenticated users only. The remaining services, i.e.,
GroundLink, myTaxi, Easy, Jeeny, RideLA, and eCab do not
require any form of user authentications. This allows any pub-
lic attacker to retrieve nearby cars without user authentication.

It is worth to mention the case of GoCatch. Every time
a user wants to log in at GoCatch, the service requires the
submission of a token sent via SMS. While this approach may
affect the service usability, it can raise the cost of the attacker
operations.

Session Lifespan. Since the beginning of the experiments, all
services—except for three—have not required us to obtain a
fresh user session. For Uber, Lyft, Heetch, Gett, and Flywheel,
the experiments last in total 28 days. During this period, only
Lyft and Flywheel require us to refresh the session ID after 24
hours and every 30 minutes, respectively. For the other services
the experiment lasted 15 days (eCab and Taxify only 7 days).
Among these, only Ztrip requires to refreshen the session ID
every 30 minutes.

Anti-GPS Spoofing. Our analysis did not reveal the presence
of any anti-GPS spoofing behavior among all of tested RHSes.

Identifier Lifespan. Overall, 17 services do not use short-lived
identifiers. The maximum time interval is the same as that of
session lifespan. Only three services shuffle identifiers every
20 minutes. Among these, it is worth mentioning the behavior
of Flywheel that refreshes identifiers about every 10 minutes.

Personally Identifiable Information. Our analysis revealed
that in total six services share Personally Identifiable Infor-
mation (PII). Among them, we discovered full names, phone
numbers, as well as sensitive information such as social
security numbers and bank account data. The complete list
of PII per service is in Table III.

C. Takeaway

In short, our first analysis did not observe any particular
countermeasures hampering attackers. Instead, our analysis
revealed behaviors that can facilitate attackers, e.g., long-lived
tokens. Also, our tests identified two types of vulnerabilities
in 11 RHSes: six services do not require user authentication
to reveal the position of nearby drivers, and other six services
directly return a variety of personally identifiable information
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Rider App City/Area Req/s Days Cov/M

Uber O’ahu Island, Hawai’i 1 28 19
Easy Sao Paulo, Brazil 4 15 0.3
Gett Eilat, Israel 4 28 0.3
Lyft O’ahu Island, Hawai’i 5 28 19
myTaxi Hamburg, Germany 4 15 20
Taxify Paris, France 2 7 12
BiTaksi Istanbul, Turkey 4 15 20
Heetch Stockholm, Sweden 4 28 12
Jeeny Riyadh, Saudi Arabia 4 15 0.3
Flywheel Seattle, US 4 28 7
GoCatch Sydney, Australia 4 15 20
miCab Cebu, Philippines 4 15 0.8
RideAustin Austin, US 4 15 7
Ztrip Houston, US 4 15 12
eCab Paris, France 2 7 7
GroundLink Dallas, US 4 15 20
HelloCabs Yangon, Myanmar 4 15 7
Ride LA Los Angeles, US 4 15 20
Bounce San Diego, US 4 15 20
DC Taxi Rider Washington DC, US 4 15 3

Table IV: An overview of the parameters of our experiments.
Cov/M for the estimate coverage area (mi2) of one monitor.

(RideLA contains both vulnerabilities), which even includes
sensitive and confidential information (e.g., social security
numbers and bank account numbers).

V. ATTACKS

The results of the web API analysis indicate that the Nearby
Cars API may be poorly protected. Attackers may be able to
collect a large volume of data containing drivers’ identifiable
information and their positions, which can uncover drivers’
sensitive information indirectly. To demonstrate the threats,
in this section, we present three attacks to show that the
current implementations of Nearby Cars API not only seriously
threaten drivers’ safety and privacy, but also allow attackers to
spy on RHS business performances.

In this section, we present the details of our attacks.
First, we present the data collection and processing in §V-A.
Then, three attacks are presented in §V-B,§V-C, and §V-D,
respectively.

A. Design

Our attacks consist of three components: data acquisition,
data aggregation, and data analysis.

Data Acquisition. Data acquisition is performed with moni-
tors. A monitor is a bot that controls a rider account. In this
study, all monitors for a particular RHS use only one account.
A monitor is placed in an appropriate location in a city to
collect data by continuously performing API calls with spoofed
GPS coordinates and store collected data in a local database.
Moreover, monitors are responsible for determining when the
authorization token needs to be refreshed.

The exact locations of our monitors are determined as
follows. First, if the RHS operates in multiple cities, we
select a city which is relatively isolated from neighboring
cities (e.g., in an island). Second, we calculate the average
size that a monitor could cover (up to 20 mi2 for ethical
concerns). Then, we place monitors in a grid based on the size
of the area covered by each monitor, which varies considerably

across services; however, as cities have irregular shapes, we
adjusted monitors to better adapt to the shapes manually. Also,
as monitors may cover the same area, we further refined
the positions of monitors to reduce overlaps. The locations,
coverage size of each monitor, and other parameters of our
experiments are reported in Table IV.

After being placed, each monitor starts to acquire data
at a constant request rate, which has been determined by
considering ethical aspects. Specifically, our experiments must
not interfere with the normal business operations of RHSes and
not to trigger the active rate-limiting mechanism, if there is any.
Accordingly, we first tried to acquire data from Lyft with a rate
of 10 requests per second, the documented rate limits. After
two hours, we reached the Lyft’s rate limit, and we reduced
monitors’ rate by half, i.e., five requests per second. Then, we
used the new rate for Uber. However, we reached the rate limit
of Uber as well and further reduced to one request per second.
For the other RHSes, we set the initial rate four requests per
second and never changed it. Only for Taxify and eCab, we
further reduced the request rate to two requests per second.

In fact, we acquired data incrementally. First, we started
the acquisition for Lyft, Uber, Heetch, Gett, and Flywheel
on April 13th, 2018. The responses data are collected over
four consecutive weeks (28 days), i.e., between April 13th
and May 10th. Then we extended the acquisition of data to
the remaining 15 RHSes from May 11th. In total, except for
Taxify and eCab, we acquired data for 15 days. Because of
a power outage, our monitors were offline or gathered partial
date between May 12th and 14th, and May 19th and 21th.
We excluded these days in the following study. For Taxify
and eCab, we acquired only seven days because the network
providers flagged our machines as infected. Accordingly, we
suspended the acquisition of data.

Data Aggregation. Responses of Nearby Cars API return car
paths. Each path is a list of timestamped GPS coordinates with
an identifier, which is used to link paths to cars or drivers and
does not change over time. One of these RHSes, i.e., Lyft,
requires additional attention. Lyft’s Nearby Cars API responses
include the URL of driver’s avatar, a driver-chosen picture
(selfie in most cases). Avatars do not change very often, and
this makes them reliable identifiers for drivers. However, each
response contains only the URL of the closest driver. To gather
the URLs of other drivers, we deploy a mobile monitor for
each newly-discovered “driver” to perform an additional API
call closer to the most recent GPS coordinate.

Data Analysis. The final step is to remove noises from our
dataset. First, we observe that drivers work as full-time or part-
time. We categorize drivers as full-time if they appear more
than half of the total number of days. Compared to the part-
time drivers, full-time drivers have a tendency to exhibit more
regular daily patterns. Thus, we focus on full-time drivers only.
Second, drivers have various activities through a day if they
are absent in our dataset, giving a ride or logged out of the
platform (e.g., to sleep or eat). As none web API we used to
collect data can distinguish a specific activity, we rely on the
inter-path interval to distinguish the two cases. In particular,
we observe that the average ride in the cities that we are
monitoring could last up to 45 minutes. Accordingly, if the
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(a) (b)

Figure 4: (a) Heatmap of Heetch drivers one day in Stockholm;
(b) Path of a single Gett driver in Eilat, Israel.

time interval between two consecutive paths is between 5 and
45 minutes, then the driver is treated as giving a ride. Similarly,
if the interval is longer than six hours, then the driver is taking
a break.

B. Attack #1: Tracking Drivers’ Daily Routines

In this attack, we discover that the collected data can
be used by attackers to precisely track drivers during their
daily routine. First, we show that the information could allow
attackers to precisely determine the movements of drivers over
time. Then, we demonstrate that the information can also allow
attackers to identify drivers’ daily behaviors, specifically, their
working patterns and the most likely appeared locations with
a precision of 100m.

Movements of Drivers. Figure 4(a) is a heatmap of all Heetch
drivers’ paths operating in Stockholm in a day, which is drawn
by overlapping all paths of Heetch drivers in our dataset. The
red color of Figure 4(a) shows the areas where the activities
of drivers are more intense, i.e., central Stockholm. The
heatmap fades to the green color towards areas less popular,
i.e., outskirts of Stockholm. In addition, the collected data
allows an attacker to track a single driver too. For example,
Figure 4(b) shows all paths of a single Gett driver in Eilat,
Israel.

Daily Behaviors of Drivers. Our dataset reveals daily be-
haviors of drivers. In this attack, we focus on the daily
working patterns of drivers, i.e., when to start working, and
the most likely appeared locations (e.g., home) over different
days at about the same time of a day. Disclosure of drivers’
behaviors and locations where a driver mostly visited is a
serious sensitive data leakage that threatens drivers’ safety. Due
to the limitation of computing power, network bandwidth as
well as ethical considerations, for some RHSes, our monitors
may not cover the entire area of the city. Drivers’ behaviors
in these uncovered areas may bring noises to our analysis in
this attack. For example, if a driver continuously works in
the uncovered area, then the related information of this driver
is missing from our dataset. In this case, it is possible that
this driver is actually working but is considered as taking a
break because of being absent from our dataset longer than

RHS # Total # Morning % # Afternoon % # Evening %

Uber 1,202 705 58.7% 336 30.0% 161 11.3%
Lyft 638 385 60.3% 167 26.2% 86 13.5%
Gett 120 82 68.3% 27 22.5% 11 9.2%
miCab 152 136 89.5% 10 6.6% 6 3.9%

Table V: Daily working patterns of drivers from Uber, Lyft,
Gett and miCab.

six hours. Because of these constraints, we eventually choose
to only test four RHSes, Uber, Lyft, Gett and miCab, whose
monitors cover almost the entire city, for proof of the concept.

In addition, to further remove the noise data and simplify
our tests, we chose the cities which are either located in an
island or relatively isolated from the nearby cities. As an
almost closed system, most aspects of the society is expected
to remain stable, e.g., the number of cars and drivers, people’s
life styles. A stable system benefits attackers to retrieve the
pattern of these aspects. Specifically, the dataset of Uber and
Lyft was acquired in O’ahu Island, Hawai’i, from April 13th,
2018 to May 10th, 2018, the dataset of Gett was acquired in
Eilat, Israel, and miCab in Cebu, Philippines from May 11th,
2018 to May 25th, 2018.

Working Patterns: The working patterns of drivers from
an RHS is revealed by studying the repetitive behaviors of
these drivers. To find out the behaviors, first, we select drivers
whose six-hour break is across two consecutive days. Among
these drivers, we select those who start working from locations
that are within 100m from each other. Then, we use the total
number of nearby points as a measurement of the precision
for detections. By using a low precision of three points, we
identified totally 1, 202 Uber drivers, 638 Lyft drivers, 120 Gett
drivers and 152 miCab drivers who start working from almost
the same location across days. Next, we study the working
patterns by classifying them into different work shifts. We
separate a day into three shifts, morning (4:00 AM to 12:00
PM), afternoon (12:00 PM to 8:00 PM), and evening (8:00
PM to 4:00 AM next day). If a driver starts working at 9:00
AM, then his or her work shift is in the morning. The result
of drivers’ daily working patterns is shown in Table V. As we
expected, most drivers from any of these RHSes prefer to start
working in the morning, less in the afternoon, and the least in
the evening.

Appeared Locations — Home: Further analysis of the
data may reveal the most likely appeared locations of a driver,
if attackers restrict the criteria by increasing the precision of
the location detection and narrowing down the time window.
Among these locations, we intend to uncover one of the
secretest privacy information of a driver — the home address.
For this purpose, we focus on drivers who start from the same
place between 6:00 AM and 9:00 AM with a probability of
0.5. Our hypothesis is that, if a driver starts working in the
morning from the almost the same location which is in a
residential area, then such location is mostly like to be his
or her home. To validate this hypothesis, we need to plot the
GPS coordinates and centroid of the points of such location
for each driver on a map and manually verify them. Therefore,
we choose to use Uber to verify this hypothesis, because it has
the largest number of full-time drivers in our dataset.
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As a result, our dataset revealed that 334 Uber drivers start
working from the same nearby points for half of the time.
Among these 334 drivers, we have identified that 123 of them
that start working between 6:00 AM and 9:00 AM. After
plotting and manually checking these locations, we verified
that 102 of them is located in a residential area, which may
suggest that it is nearby the real address in which drivers live;
six of them is nearby restaurants; and 15 of them is located
nearby gas stations and shopping centers, where may be the
places that these drivers are used to having breakfast.

Interestingly, as the data of Uber and Lyft is collected in the
same area, we then plotted possible home addresses of their
drivers on the map and we discovered a set of overlapping
points. Even this overlapping is probably a coincidence, given
the observations that many drivers work for both two RHSes,
we reasonably question whether our collected data is capa-
ble of uncovering driver’s employment status? For example,
whether a driver only works for one specific RHS or different
RHSes at the same time. This inspires us to conduct the
following attack, namely attack #2 presented in §V-C.

Takeaway. From this analysis, we showed that the data
obtained by Nearby Cars API can reveal the movements of a
driver over time. In addition, more seriously, further analysis
of these data can also disclose sensitive privacy information,
which includes drivers’ working patterns and the most likely
appeared locations, which could be a restaurant, a gas station,
or even the real home.

C. Attack #2: Uncovering Drivers Employment Status and
Preference

In addition to the interesting observation about drivers may
work for multiple RHSes, this attack is also inspired by a news
report. More specifically, Uber was reported to used the Hell
program to spy on Lyft drivers from 2014 to 2016, in order to
identify drivers working for both platforms and convince them
to favor Uber with additional financial rewards [11]. But it is
still unclear how technically Uber performed such an attack.
Therefore, in this attack, we intend to show that it is possible
to use our collected data to identify drivers using different
platforms simultaneously, and to reveal which platform is more
of a driver’s favor. We exemplify these attacks on Uber and
Lyft whose data is collected on O’ahu Island, Hawai’i, from
April 13th, 2018 to May 10th, 2018.

Drivers Employment Status. This attack is to reveal whether
a driver is employed by different RHSes simultaneously. The
main challenge is to compare data points of Uber and Lyft
drivers and look for matches. To reduce the scope of possible
matches, we first remove obvious contradictions. For example,
drivers that are in two different areas in the same time interval
cannot be the same driver. Afterwards, we select all pairs
of paths and count the number of points are closer both in
space (i.e., 60 meters) and time (i.e., two seconds). In total,
we identified 401 drivers that are at the intersection of the
835 Lyft and 1, 328 Uber full-time drivers. To validate this
results, we randomly selected 100 drivers and plotted their
paths on the map for visual verifications. We did not notice
any contradiction against the hypothesis that these drivers are
working for both platforms.

(a) (b)

Figure 5: Examples of overlapped paths. Green is Uber and
Red is Lyft.
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Figure 6: CDF of shared drivers only use Lyft or Uber.

Figure 5 shows two examples of overlapped paths of an
overlapped driver. The red path with start and end markers is
from the Lyft dataset and the green is from the Uber dataset. In
Figure 5(a), the two paths start from almost the same location
(start markers are overlapped) but end in different locations;
and in Figure 5(b), the red path and the green path starts and
ends both in different locations. This could happen, because a
driver may not perform the same operations on two apps, for
example, closing one app while keeping the other one running.

Drivers Preferences. In addition, our analysis also revealed
interesting elements about drivers’ preferences: 48% of Lyft
drivers is also on the Uber platform, whereas only 30% of
Uber drivers is on the Lyft platform. We detailed this aspect
by looking at the number of days a driver prefers exclusively
working with one RHS or the other. Figure 6 shows the
result of this analysis. It indicates that drivers using these two
platforms prefer using Uber over Lyft. Because, more than
64% of drivers working for both prefer using exclusively Uber
against only 33% drivers prefer Lyft for at most 14 days, i.e.,
half of the time considered for this analysis.

Takeaway. Overall, our analysis showed that the Nearby Cars
API can be used to snoop on drivers using different platforms
simultaneously. Interestingly, our analysis showed that drivers
operating in O’ahu Island, Hawai’i tend to prefer the Uber
platform.
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Figure 7: (a) Contour lines of Lyft active drivers; (b) Contour
lines of Uber active drivers. On the X axis, 0 is for Sunday
and 6 is for Saturday.

D. Attack #3: Business Information Leakage

In this attack, we show that the collected data can be
used by attackers to extract business information of RHSes.
In particular, we focus on RHSes that are operating in the
same city, i.e., eCab and Taxify in Paris, Uber and Lyft in
O’ahu Island, Hawai’i, though, it can be conducted between
RHSes of different areas for espionage as well. Specifically,
for each pair of competitors, we extract and compare the
metrics and statistics of their operations with each other, which
includes the number of drivers, number of rides, distribution
of active drivers over weekdays and time of the day, and
waiting time. This analysis is not meant to be a complete
comparison between organizations; however, it intends to show
the feasibility of such an attack.

Lyft vs. Uber. Consider, for example, that one of the two
RHSes would like to know the number of cars used by the
other competitor as well as the hours and days of activity. The
first part of the analysis answers this question by extracting the
distribution of number of drivers over weekdays and time of
the day from our dataset. Figure 7 shows the average number of
drivers for each weekday and hour using contour lines. In the
X axis, we use “0” for Sunday and “6” for Saturday. It shows
that, from Monday to Friday, drivers from both platforms are
more active between 10:00 AM and 5:00 PM, and less active at
night from 1:00 AM to 5:00 AM. Over weekends, the activity
of drivers shifts to later hours. Second, we observe that, at
each given time, Uber has more active drivers than Lyft, i.e.,
about a factor of 2X . Also, we notice a peak of Uber drivers on
Mondays. We did not observe a similar peak for Lyft. We could
not find a reasonable explanation for this observation. Based
on this analysis, we can conclude that Uber has a considerable
advantage over Lyft on the O’ahu Island.

An RHS may also be interested in comparing the per-
formances of its own operations with its competitors. In
practice, RHSes deploy algorithms to match riders to drivers
and indicate areas where there is a higher demand of rides.
The efficiency and accuracy of these algorithms is crucial
to optimize the use of resources. Our dataset can also be
used to answer this question. For example, Figure 8 shows
the daily average number of rides and average waiting time,
which shows periodic patterns over four weeks except for the
third week between April 28th and May 2nd. This anomaly
is believed to be caused by the Lei Day, a public holidays
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Figure 9: Active drivers in eCab and Taxify.

observed in the State of Hawaii which falls on the 1st of May
(vertical orange bar in Figure 8). In addition, Figure 8 also
shows that Lyft has a higher average number of rides and a
lower average waiting time than Uber, which indicates that
Lyft manages to match demand and supply more efficiently
than Uber, despite of the lower number of cars.

eCab vs. Taxify. eCab and Taxify are two emerging European
organizations. Basically, eCab is an alliance of traditional taxi
companies whereas Taxify is a more recent company with a
business model similar to Uber and Lyft. These two organiza-
tions may have interest in the number of cars owned by the
competitor to make decides on the business development. To
this end, our analysis discovered 7, 973 cars are operated under
eCab, who claims to have 7, 700 cars in Paris6, and 3, 565 cars
are owned by Taxify that claims to operate 2, 000 to 5, 000 cars
in Paris [16].

The two organizations may also be interested in extracting
the type of clientele of the competitor. Figure 9 shows the
distribution of average active drivers from both eCab and
Taxify. The number of active drivers increases from 5:00 AM
to about 3:00 PM. After that, the number of eCab drivers drops.
However, Taxify does not show the same trend. Instead, it
keeps a quasi-steady shape till midnight. The type of riders
can explain the different evening/night pattern. For example,

6See eCab’s website https://www.e-cab.com/en/paris/
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due to its origins, eCab may have retained most of the riders,
e.g., business persons. On the contrary, Taxify may look more
attractive for younger riders or tourists.

Takeaway. This attack showed that the Nearby Cars API can
be used to extract data to compare performances of competing
organizations. For example, we showed that in O’ahu Island,
Lyft seems to perform better than Uber: a higher average
number of rides and less average waiting time. We speculated
that Lyft better matches demand and offer. In Paris, we
confirmed that eCab has, overall, a higher number of cars than
Taxify. However, our dataset may suggest that Taxify and eCab
may have different type of riders.

VI. DISCUSSION

In this section we sum up our findings and discuss possible
countermeasures against our attacks.

A. Data Reliability

News reports have pointed out that the cars shown on the
map may be fake7. However, observations from our results
indicate that real drivers are generating the data, supporting
Uber’s statement that denies the news allegations8. First, as
presented in §V-D, the identified number of drivers meets
reported or officially claimed statistics. Second, the collected
data for both Uber and Lyft show an anomaly that could
be explained by the celebration of the Lei Day. Despite
these observations, we further evaluated the responses of the
Nearby Cars APIs to detect instances of fake cars by manually
watching the cars in the street. Out of 20 Uber and Lyft cars
passing from a given street, all of them were present both
on the map and on the street. The average delay between
cars appearing on the map and on the street is about five
seconds. Then, when a car is shown on the map, the car has
no passengers, which indicates that the driver is available for
riders. Based on our observations and evaluation, we believe
that data shared with the Nearby Cars API is organic and quasi-
real-time.

B. Solutions and Pitfalls

Based on the two analyses in §IV and §V, we obtained a
list of pitfalls, mitigations, and suggestions in order to solve
the security issues presented in this paper.

Rate Limits. In this paper, we showed that a low request rate
is sufficient to identify drivers’ sensitive privacy. Among 20
services, only three described rate limits in the documentation.
However, none of them were sufficient to prevent the attacks
presented in §V. In two cases, i.e., Taxify and eCab, even we
observed hard rate limits, but these limits were not presented
from the very beginning of our analysis. They were introduced
after we received the notification of compromisation of our sys-
tem from the network provider. This suggested that the network
providers of Taxify and eCab were supervising network traffics
to spot unusual requests to identify compromised machines. In

7See, e.g., http://www.wired.co.uk/article/uber-algorithm-fake and
http://www.slate.com/articles/technology/future_tense/2015/07/uber_s_
algorithm_and_the_mirage_of_the_marketplace.html

8https://www.wired.co.uk/article/uber-cars-always-in-real-time

HTTP/1.1 200 OK
Content-type: application/json
...

{
"cars": [

{
//Car 1
"positions": [

{
"GPS": "-33.7100 / 151.1342",
"t"  : "15259620050000"

},  {
"GPS": "-33.7300 / 151.1200",
"t"  : "15259620060000"

},
...

}, {
//Car 2
...

},  
...   

}

Figure 10: An example of Nearby Cars API response without
car and driver identifiers.

general, we conclude that the rate limiting is not an ineffective
countermeasure against the attacks presented in this paper.

Concealing Position with Distance. All RHSes that we stud-
ied return GPS coordinates of nearby cars. Service providers
may consider to conceal the exact locations of cars by returning
the distance between drivers and the rider. However, driver’s
distances could still be used to infer the position of drivers
by utilizing distance triangulation. That is, for each car, the
attacker needs to perform three requests from three different
points to approximate the position of the driver. We consider
this to be an ineffective countermeasure.

Linkability. The analysis of collected data points is based
on the capability of the attacker to link paths to drivers. In
our analysis, 14 services do not directly provide identifiers
for drivers, and this is revealed to be an obstacle towards the
data aggregation. However, only removing driver identifiers
from responses is not a sufficient countermeasure. As we
showed, attackers can aggregate whatever identifiers in the
response messages over time, which is sufficient for our attacks
because these identifiers last long enough to be identified
as an equivalent to driver IDs. A stronger countermeasure
is to remove any identifiers. For example, the Nearby Cars
API response can return a list of grouped timestamped GPS
coordinates, one group for each car. An example of such a
response is shown in Figure 10 that is derived from Figure 2.

Synthetic Data. Removing identifiers from response messages
can partially solve some attacks against driver’s privacy in
this paper, but the leakage of business information still re-
mains unprotected (e.g., the heatmap of drivers of an RHS).
Moreover, we cannot exclude that machine learning expertise
can be applied to extract patterns for linking paths to drivers.
A possible solution to this threat is to use synthetic data.
However, while this may solve the security concerns raised by
this paper, riders may notice a mismatch between cars reported
by the app and the ones seen on the street that might raise
complaints.

Improper Implementation Logic. The Nearby Cars APIs
from six RHSes leak personally identifiable information (PII).
According to the business logics of RHSes, providing nec-
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essary PII to riders is inevitable. However, improper imple-
mentation logic may provide the PII to the one who should
not receive. For example, a driver’s avatar should be provided
to the rider who has successfully scheduled a ride, not any
other users. Therefore, we consider an appropriate practice is
to provide PII after a successful scheduled ride, which can
protect drivers’ PII from unexpected leakages.

C. Ethical Considerations and Responsible Disclosure

The analysis presented in this paper involved the analysis
of remote servers and handling sensitive data of drivers.
We addressed the ethics concerns of our study as follows.
First, we designed experiments to avoid interfering the normal
operations of RHSes. Our experiments (i) used a low request
rate, and we adapted it based on the feedback received by
the remote servers and (ii) we did not request, cancel or
did any other operations that could change drivers behavior.
Second, even though the data we collected is accessible to the
public and has not been encrypted, our monitors have been
implemented to remove sensitive response fields before storing
data in our database. In doing so, we are not storing any private
data item, such as full names, dates of birth, and social security
numbers.

Our analysis identified security issues that need to be
addressed by RHSes’ developers. We have notified our findings
as follows. First, for these RHSes with clear vulnerabilities,
e.g., the SSN returned by Bounce and unauthenticated access
to the Nearby Cars API, we have followed the notification
procedure presented by Stock et al. [35]. After the initial noti-
fication, we regularly verify the presence of the vulnerability.
If the vulnerability is present, then we send a reminder after
two weeks of the initial notification. Second, to adequately
address our findings, RHSes developers may need to redesign
the web API and the rider app as well. In this case, we have
reached out to the developers, and are discussing the details
of our findings.

D. Feedbacks After Disclosure

We notified the developers of all 20 RHSes about our
results. Eight services shared with us the details of the
patch and asked for our feedback. For example, Bounce
removed sensitive PII including social security number and
bank account number from their response messages, Lyft’s
Nearby Cars API has stopped providing avatar informations,
and Heetch is considering to harden the web API usage by
introducing further restrictions such as shorter the lifespan of
drivers’ IDs. Furthermore, as a result of our notification efforts,
Lyft and Uber each awarded us a bug bounty.

E. Lessons Learned

The Unlearned Lesson Despite Media Attention. The mas-
sive sensitive data leakage of drivers [30] and the Hell pro-
gram [11] have received extensive media attentions covering
both legal and financial impacts. However, despite all these
attentions, changes in the platforms, if any, are not perceptible
making it possible for an attacker to spy on drivers.

From Security to Safety. Second, most of the attention
has been devoted to the industrial espionage between two

competitors and a little has been paid to the possible safety
issues of drivers. Unfortunately, the issues presented in this
paper goes beyond the mere computer security issue and
touches drivers’ safety. As shown in this paper, Nearby Cars
APIs can be used to determine driver’s home address.

A Market Segment Problem. Finally, a more concerning
outcome of our findings is that Uber and Lyft are not two
isolated cases. On the contrary, our results show a problem
of an entire sector: for all services, it is possible to mount
the same set of attacks of inferring driver’s home addresses;
also, all of these ride-hailing services suffer from at least one
vulnerability. Meanwhile, in one case, i.e., Gett, the attacker
can directly query a web API to obtain the position of a specific
driver, without the need of harvesting API responses.

VII. RELATED WORK

Privacy-Preserving Location-Based Services (LBS). Privacy
in LBSes is a long-lasting concern. Many privacy-preserving
architecture have been proposed and attempted to address
privacy issues in the broader category of LBSes, e.g., location-
based Trust for Mobile User-generated Content [23], location-
based social networks [17], privacy-preserving location proof
updating system [38], privacy-aware location proof architec-
ture [26]. Most recently, Pham et. al. also proposed two privacy
preserving LBS systems particularly for ride-hailing services:
ORide [29] and PrivateRide [30]. Our work complements these
efforts by demonstrating the possible attacks current ride-
hailing services still face.

Leakage of Privacy Sensitive Data in Mobile Applications.
The detection of data leakage in mobile applications is a chal-
lenging problem that has been addressed from different angles
using different techniques. For example, Enck et al. [13], Yang
et al. [37] and Egele et al. [12] focused on the problem of
identifying mobile apps that transmit sensitive data such as
GPS position and contact lists without device users awareness.
Data leakage can also occur when transmitting user-provided
sensitive date. SUPOR [19] and UiRef [4] have been designed
to detect these leakages. Finally, data leakage can be the result
of exploitations of code vulnerabilities such as code injection
vulnerabilities [20] or improper certificate validation [14], or
library vulnerabilities [28].

There are also efforts of identifying the privacy leakage of
the server response data from mobile apps. For instance, Kock
et. al. [22] proposed using both static analysis and dynamic
analysis to semi-automatically discover server-based informa-
tion oversharing vulnerabilities, where privacy sensitive cus-
tomer information was unexpectedly sent to the mobile apps.
Improper implementation of access control mechanism at the
server side can also lead to sensitive data leakage from mobile
apps, as shown in AuthScope [43] and LeakScope [41]. Our
work is inspired by these server side data leakage problems,
but we focus on a new context particularly in the ride-hailing
service that has not been explored before.

Web API and Protocol Reverse Engineering. To conduct
our study, we developed a lightweight dynamic analysis tool
to reverse engineer the remote server web APIs for privacy
sensitive data analysis. In fact, there is also a large body of
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research focusing on reverse engineering of network protocols
from both network traces and application binary executions. In
particular, Discoverer [9] and Protocol Informatics [2] extract
protocol format from the collected network traces, whereas
Polyglot [7], AutoFormat [24], Dispatcher [6], Reformat [36]
instead extract protocol format based on how network message
is processed by the application binary. Inferring the protocol
format is not the primary goal of our analysis. Recently,
WARDroid [27] introduces a static-analysis based method to
extract web APIs, but it focuses on the implementation logic,
which is not the objective of our analysis. However, our tech-
nique can certainly integrate these techniques to recognize the
message format in addition to the discovery of the web APIs.

Dynamic Analysis of Mobile Apps. Our approach is based
on dynamic analysis to identify web APIs and dependencies.
Similarly, dynamic approaches have been used in the past to
study specific security problems. For instance, TaintDroid [13]
has been used to detect whether user’s privacy sensitive infor-
mation can be leaked outside the phone; AppsPlayground [32]
recognizes the user interfaces of mobile apps and gener-
ates corresponding inputs to expose more app behaviors;
DECAF [25] navigates various activities of mobile apps to
discover potential Ads flaws; SmartGen [40] executes a mobile
app with selective concolic execution to expose malicious
URLs; so on and so forth.

Our approach differs from these existing techniques as
follows. First, we solve the problem of extracting web APIs
including the parameter roles from mobile apps. Second, each
work has their own unique challenges. For instance, we do
not face the issues of executing all the possible program paths
of a mobile app, and instead we rely on security analysts
to execute the app. Certainly, we can integrate existing
efforts such as SmartGen [40] to expose the web APIs more
efficiently and automated.

VIII. CONCLUSION

We have presented a large-scale study of the privacy-
sensitive data leakage of drivers in the ride-hailing services. We
focus on one particular feature, namely the nearby cars feature,
which retrieves nearby car’s information from the server when
a rider opens the mobile app. Surprisingly, our study with 20
ride-hailing services including both Uber and Lyft has revealed
that the data harvesting attacks are feasible. In particular, our
study showed that these attacks are a real threat to the safety
of drivers: attackers can determine the locations of drivers
with high-precision, including but not limited to the home
address, and detect driver’s daily behaviors. Moreover, some
of the services also leak other confidential information such
as the social security numbers of drivers. Furthermore, the
aggregated business information about the ride-hailing services
can also be learned by attacks such as the number of rides,
utilization of cars, and presence on the territory. In addition
to evaluating the current countermeasures and reporting the
attacks we conducted, we have also discussed more robust
countermeasures the service providers could use to defeat the
attacks presented in this paper.
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