
From Model-checking to Automated Testing of

Security Protocols: Bridging the Gap?

Alessandro Armando1,2, Giancarlo Pellegrino3,4, Roberto Carbone2,
Alessio Merlo1,5, and Davide Balzarotti3

1 DIST, Università degli Studi di Genova, Italy
{armando, alessio.merlo}@dist.unige.it

2 Security & Trust Unit, FBK-irst, Trento, Italy
{armando, carbone}@fbk.eu

3 Institute Eurecom, Sophia Antipolis, France
{giancarlo.pellegrino, davide.balzarotti}@eurecom.fr

4 SAP Research, Mougins, France
giancarlo.pellegrino@sap.com

5 Università Telematica E-Campus, Italy
alessio.merlo@uniecampus.it

Abstract. Model checkers have been remarkably successful in �nding
�aws in security protocols. In this paper we present an approach to bind-
ing speci�cations of security protocols to actual implementations and
show how it can be e�ectively used to automatically test implementa-
tions against putative attack traces found by the model checker. By using
our approach we have been able to automatically detect and reproduce
an attack witnessing an authentication �aw in the SAML-based Single
Sign-On for Google Apps.

1 Introduction

Security protocols are communication protocols that aim at providing security
guarantees (such as authentication or con�dentiality) through the application
of cryptographic primitives. Security protocols lie at the core of security-critical
applications, such as Web-based Single Sign-On solutions and on-line payment
systems. Unfortunately, security protocols are notoriously error-prone as wit-
nessed by the many protocols that have been found vulnerable to serious attacks
years after their publication and implementation. (See [13] for a survey.)

Interestingly, many attacks on security protocols can be carried out with-
out breaking cryptography. These attacks exploit weaknesses in the protocols
that are due to the complex and unexpected interleaving of di�erent proto-
col sessions as well as to the possible interference of malicious agents. Since
these weaknesses are very di�cult to spot by traditional veri�cation techniques

? This work has partially been supported by the FP7-ICT Project SPaCIoS
(no. 257876) and by the project SIAM funded in the context of the FP7 EU �Team
2009 - Incoming� COFUND action.

(e.g., manual inspection and testing), a variety of novel model checking tech-
niques speci�cally tailored to the analysis of security protocols have been put
forward [1, 18, 22]. This has spurred the development of a new generation of
model checkers which has proved remarkably successful in discovering (previ-
ously unknown) �aws in security protocols [4, 20, 28]. While in the past model
checkers have been mainly used to support the analysis of security protocols at
design time, recently their usage has been extended to support the discovery of
vulnerabilities in actual, even deployed, systems. For instance, model checking
was key to the discovery of serious vulnerabilities in the SAML-based Single
Sign-On for Google Apps [3] as well as in the PKCS#11 security tokens [11].

Test
Execution

Engine

Formal
Model

Security
Properties

SUT
Configuration

Attack Trace

Instrumentation Program
Fragments

Model Checking

SUT

Mapping

A
d

ap
te

r

Verdict

Fig. 1. Overview of the Approach

The main limitation
of the existing ap-
proaches is that re-
producing attack traces
found by a model
checker against proto-
col implementations
not only requires a
thorough understand-
ing of both the proto-
col and its implemen-
tation, but also a substantial amount of manual activity.

In this paper we tackle this di�culty by presenting an approach that supports
(i) the binding of speci�cations of security protocols to actual implementations
through model instrumentation, and (ii) the automatic testing of real imple-
mentations against putative attacks found by a model checker.

It is worth pointing out that most model checking techniques (and the asso-
ciated tools) for security protocol analysis work on abstract models of the pro-
tocols. These models do not specify how protocol messages should be checked
and generated, nor the way in which the internal state of the principals should
be updated. As a consequence, the attack traces returned by these tools are not
directly executable. Our paper shows that this gap can be �lled in automatically.
To the best of our knowledge a solution to this problem is not available.

Our approach consists of the following steps (cf. Figure 1):
Model Checking. Given a formal model of the protocol and a description of the
expected security properties, a model checker systematically explores the state
space of the model looking for counterexamples. Any counterexample found by
the model checker is returned as an Attack Trace.
Instrumentation. The instrumentation step automatically calculates and pro-
vides the Test Execution Engine with a collection of Program Fragments, en-
coding how to verify (generate) incoming (outgoing, resp.) messages, by using
the functionalities provided by the Adapter. The association between abstract
messages and concrete ones is in the Mapping input.
Execution. The Test Execution Engine (TEE) interprets the Attack Trace and
executes the program fragments accordingly. The SUT Con�guration speci�es

which principals are part of the System Under Test (SUT) and which, instead,
are simulated by the TEE. The Verdict indicates whether the TEE succeeded
or not in reproducing the attack. Note that if the verdict is negative, the whole
approach can be iterated by requesting the model checker to provide another
attack trace (if any).

Our approach naturally supports both model and property-driven security
testing and in doing so it paves the way to a range of security testing techniques
that go beyond those implemented in state-of-the-art penetration testing tools [9,
15]. For instance, prior research has shown that a number of subtle �aws found
by model checkers can be exploited in real implementations as launching pad
for severe attacks [3, 4, 11]. Moreover, even when security protocols do not su�er
from design �aw, their implementations can still expose vulnerabilities. In these
cases mutants can be derived from the original model [12, 14] and our approach
can be used to check their existence into the implementation.

In order to assess the e�ectiveness of the proposed approach we developed
a prototype of the architecture in Figure 1 and used it to test two Web-based
Single Sign-On (SSO) solutions that are available on-line, namely the SAML-
based SSO for Google Apps and the SimpleSAMLphp SSO service o�ered by
Foodle. The prototype is able to successfully execute an attack on the Google
service whereby a client gets access to her own Gmail account without having
previously requested it [4]. Quite interestingly, our prototype also shows that the
same attack does not succeed against the SSO service of Foodle, due to speci�c
implementation mechanisms used by SimpleSAMLphp.

2 SAML Web-browser SSO

Browser-based Single Sign-On (SSO) is replacing conventional solutions based
on multiple, domain-speci�c credentials by o�ering an improved user experience:
clients perform a single log in operation to an identity provider, and are yet able
to access resources o�ered by a variety of service providers. Moreover, by replac-
ing multiple credentials (one per service provider) with a single one (associated
with the identity provider), SSO solutions are expected to improve the overall
security as users tend to use weak passwords and/or to reuse the same password
on di�erent service providers.

The OASIS Security Assertion Markup Language (SAML) 2.0 Web Browser
SSO Pro�le (SAML SSO, for short) [23] is an emerging standard for Web-based
SSO. Three basic roles take part in the protocol: a client C, an identity provider
IdP and a service provider SP. The objective of C, typically a web browser
guided by a user, is to get access to a service or a resource provided by SP. IdP
is responsible to authenticate C and to issue the corresponding authentication
assertions (a special type of assertion used to authenticate users). The SSO
protocol terminates when SP consumes the assertions generated by IdP to grant
or deny C access to the requested resource.

SAML Authentication Protocol

C IdP SP

S1. GET URI

A1. HTTP302 IdP?SAMLRequest=AuthnReq(IS,DS, IIreq, ACS, IDreq)&RelayState=URI

A2. GET IdP?SAMLRequest=AuthnReq(IS,DS, IIreq, ACS, IDreq)&RelayState=URI

IdP builds an authentication assertion
AuthnAssert(IDAA, IS, IIAA, SJ,RC,
IDreq, SID, NA,NB)A3. HTTP200 Form(. . .)

A4. POST ACS, RelayState=URI&SAMLResponse=Response(IDresp, IDreq, DS, IIresp,AuthnAssert(. . .))

S2. HTTP200 Resource(URI)

Fig. 2. SAML Web-browser SSO SP-Initiated

Figure 2 shows an
excerpt of the mes-
sages exchanged dur-
ing a typical execu-
tion of the SAML
SSO protocol. In the
�rst message (S1), C
asks SP to provide
the resource located
at URI. SP then ini-
tiates the protocol by sending C a redirect response (A1) of the form:

HTTP /1.1 302 Obj Moved\r\n
Location: IdP ?SAMLRequest=AuthnReq(IS,DS, IIreq, ACS, IDreq)&RelayState=URI

where AuthnReq(IS,DS, IIreq, ACS, IDreq) abbreviates the XML expression:

<AuthnRequest ID="IDreq" Version ="2.0" IssueInstant ="IIreq"
Destination ="DS" AssertionConsumerServiceURL ="ACS"
ProtocolBinding ="HTTP -POST">
<Issuer >IS </Issuer >

</AuthnRequest >

Here IDreq is a string uniquely identifying the request, IS is the issuer of the
request, DS is the intended destination of this request, IIreq is a timestamp, and
ACS (Assertion Consumer Service) is the end-point of the SP. A common imple-
mentation choice is to use the RelayState �eld to carry the original URI that the
client has requested. In step A2, C forwards the authentication request to IdP,
which in turn challenges C to provide valid credentials. Note that in Figure 2 the
authentication phase is abstractly represented by the dashed arrow as it is not in
the scope of the SAML SSO standard. If the authentication succeeds, IdP builds
the assertionAuthnAssert(IDAA, IS, IIAA, SJ,RC, IDreq, SID, NA,NB), where
IDAA is a string uniquely identifying the assertion, IS is the issuer, IIAA is a
timestamp, SJ is the user C, RC is the intended consumer of the assertion, IDreq

is a string uniquely identifying the request, SID is the session index, and NA
and NB are NotOnOrAfter and NotBefore timestamps establishing the validity
of the authentication assertion. The assertion is then included inside a SAML
authentication response Response(IDresp, IDreq, DS, IIresp,AuthnAssert(. . .)),
where IDresp is the ID of the response, IDreq the ID of the request, DS the
destination, and IIresp is the timestamp of the operation. Then, the response
is properly encoded, placed in an HTML form equipped with a self-submitting
client-side script, and returned in an HTTP 200 response to the client (step A3).
Finally, C transmits back the response to SP (step A4), SP checks its validity
of the assertion and if these checks are successful then sends the resource to C
(step S2).

3 Model Checking

We speci�ed SAML SSO using ASLan [7], one of the speci�cation languages
developed in the context of the AVANTSSAR Project (www.avantssar.eu). For

Table 1. Facts and their informal meaning

Fact Meaning

stater(j, a, [e1, . . . , ep]) a, playing role r, is ready to execute the protocol step j, and
[e1, . . . , ep], for p ≥ 0 is a list of expressions representing the
internal state of a.

sent(rs, b, a,m, c) rs sent message m on channel c to a pretending to be b.

ik(m) The intruder knows message m.

the sake of brevity in this paper we present a simpli�ed version of ASLan, fea-
turing only the aspects of the language that are relevant for this work. ASLan
supports the speci�cation of model checking problems of the formM |= φ, where
M is a labeled transition system modeling the behaviors of the honest principals
and of the Dolev-Yao intruder (DY)6 and their initial state I, and φ is a Linear
Temporal Logic (LTL) formula stating the expected security properties. (See [3]
for the details). The states of M are sets of ground (i.e. variable-free) facts, i.e.
atomic formulae of the form given in Table 1. Transitions are represented by

rewrite rules of the form (L
rn(v1,...,vn)−−−−−−−−→ R), where L and R are �nite sets of

facts, rn is a rule name, i.e. a function symbol uniquely associated with the rule,
and v1, . . . , vn are the variables occurring in L. It is required that the variables
occurring in R also occur in L. The rules for honest agents and the intruder are
speci�ed in Sections 3.1 and 3.2. Here and in the sequel we use typewriter font
to denote states and rewrite rules with the additional convention that variables
are capitalized (e.g. Client, URI), while constants and function symbols begin
with a lower-case letter (e.g. client, hReq).

Messages are represented as follows. HTTP requests are represented by ex-
pressions hReq(mtd , addr , qs, body), where mtd is either the constant get or
post, addr and qs are expressions representing the address and the query string
in the URI respectively, and body is the HTTP body. Similarly, HTTP responses
are expressions of the form hRsp(code, loc, qs, body), where the code is either the
constant c30x or c200, loc and qs are (in case of redirection) the location and the
query string of the location header respectively, and body is the HTTP body. In
case of empty parameters, the constant nil is used. For instance, the message A1
in Figure 2 is hRsp(c30x, IdP, hBind(aReq(SP, IdP, id(N)), URI), nil) obtained by
composing hRsp, hBind and aReq. id(N) is the unique ID of the request, hBind
binds the SAMLRequest aReq and the RelayState URI to the location header. All
the other HTTP �elds are abstracted away because they are either not relevant
for the analysis or not used by SAML SSO protocol.

6 A Dolev-Yao intruder has complete control over the network and can generate new
messages both from its initial knowledge and the messages exchanged over the net-
work.

3.1 Speci�cation of the rules of the honest agents

The behavior of honest principals is speci�ed by the following rule:

sent(brs, bi, a,mi, ci) � stater (j, a, [e1, . . . , ep])
sendj,kr (a,...)−−−−−−−−→

sent(a, a, bo,mo, co) � stater (l, a, [e
′
1, . . . , e

′
q]) (1)

for all honest principals a and suitable terms brs, bi, bo, ci, co, e1, . . . , ep, e
′
1, . . . , e

′
q,

mi,mo, and p, q, k ∈ N. Rule (1) states that if principal a playing role r is at step
j of the protocol and a message mi has been sent to a on channel ci (supposedly)
by bi, then she can send message mo to bo on channel co and change her internal
state accordingly (preparing for step l). The parameter k is used to distinguish
rules associated to the same principal, and role. Notice that, in the initial and
�nal rules of the protocol, the fact sent(. . .) is omitted in the left and right hand
sides of the rule (1), respectively. For instance, the reception of the message A1
in Figure 2 by the client and the sending of the message A2 are modeled by the
following rewrite rule:

sent (SP1, SP, C, hRsp(c30x, IdP, AReq, nil), CSP2C) �

statec(2, C, [SP, IdP, URI, CC2SP, CSP2C, CC2SP2 , CSP2C2 , CC2IdP, CIdP2C])

send2,1c (C,IdP,SP,SP1,URI,AReq,CC2SP,CSP2C,CC2SP2 ,CSP2C2 ,CC2IdP,CIdP2C)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
statec(4, C, [SP, IdP, URI, AReq, CC2SP, CSP2C, CC2SP2 , CSP2C2 , CC2IdP, CIdP2C]) �

sent (C, C, IdP, hReq(get, IdP, AReq, nil), CC2IdP) (2)

3.2 Speci�cation of the rules of the intruder

The abilities of the DY intruder of intercepting and overhearing messages are
modeled by the following rules:

sent(A, A, B, M, C)
intercept(A,B,M,C)−−−−−−−−−−−→ ik(M) (3)

sent(A, A, B, M, C)
overhear(A,B,M,C)−−−−−−−−−−→ ik(M) �LHS

where LHS is the set of facts occurring in the left hand side of the rule.
We model the inferential capabilities of the intruder restricting our attention

to those intruder knowledge derivations in which all the decomposition rules are
applied before all the composition rules [21]. The decomposition capabilities of
the intruder are modeled by the following rules:

ik({M}k) � ik(k−1)
decrypt(M,...)−−−−−−−−→ ik(M) �LHS (4)

ik({M}sK) � ik(K)
sdecrypt(K,M)−−−−−−−−→ ik(M) �LHS (5)

ik(f(M1, . . . , Mn))
decomposef (M1,...,Mn)−−−−−−−−−−−−−→ ik(M1) � . . . � ik(Mn) �LHS (6)

where {m}k (or equivalently enc(k,m)) is the result of encrypting message m
with key k and k−1 is the inverse key of k, {m}sk (or senc(k,m)) is the symmetric
encryption, and f is a function symbol of arity n > 0.

For the composition rules we consider an optimisation [18] based on the
observation that most of the messages generated by a DY intruder are rejected
by the receiver as non-expected or ill-formed. Thus we restrict these rules so
that the intruder sends only messages matching the patterns expected by the
receiver [6]. For each protocol rule (1) in Section 3.1 and for each possible least set
of messages {m1,l , . . . ,mjl ,l} (let m be the number of such sets, then l = 1, . . . ,m
and jl > 0) from which the DY intruder would be able to build a message m′

that uni�es mi, we add a new rule of the form

ik(m1,l) � . . . � ik(mjl,l) � stater (j, a, [e1, . . . , ep])
impersonatej,k,l

r (...)
−−−−−−−−−−−−→

sent(i, bi, a,m
′, ci) � ik(m

′) �LHS (7)

This rule states that if agent a is waiting for a message mi from bi and the
intruder is able to compose a message m′ unifying mi, then the intruder can
impersonate bi and send m′.

3.3 Specifying the authentication property

The language of LTL we consider uses facts as atomic propositions, the proposi-
tional connectives (namely, ¬, ∨, ∧, ⇒), the �rst-order quanti�ers ∀ and ∃, and
the temporal operators F (eventually), G (globally), and O (once). Informally,
given a formula φ, Fφ (Oφ) holds if at some time in the future (past, resp.) φ
holds.Gφ holds if φ always holds on the entire subsequent path. (See [3] for more
details about LTL.) We use ∀(φ) and ∃(φ) as abbreviations of ∀X1. . . .∀Xn.φ
and ∃X1. . . .∃Xn.φ respectively, where X1, . . . , Xn are the free variables of the
formula φ. We base our de�nition of authentication on Lowe's notion of non-
injective agreement [19]. Thus, SP authenticates C on URI amounts to saying
that whenever SP completes a run of the protocol apparently with C, then (i) C
has previously been running the protocol apparently with SP, and (ii) the two
agents agree on the value of URI. This property can be speci�ed by the following
LTL formula:

G∀(statesp(7, SP, [C, . . . , URI, . . .])⇒∃O statec(2, C, [SP, . . . , URI, . . .])) (8)

stating that, if SP reaches the last step 7 believing to talk with C, who requested
URI, then sometime in the past C must have been in the state 2, in which he
requested URI to SP.

Since we aim at testing implementations using attack traces as test cases with
the purpose of detecting a violation of the authentication property, we would like
to be sure that at the end of the execution of the attack trace, the property has
been really violated. Thus, we need to take into account the testing scenario in
terms of the observability of channels and of the internal states of each principal.

This can be done by de�ning a set of observable facts. For instance, in case the
tester can observe the messages passing through a channel c then, for all rs,
b, a, and m, the sent(rs, b, a,m, c) facts are observable. Similarly, in case the
tester can observe the internal state of an agent a, then for all r, j, e1, . . ., en
the stater(j, a, [e1, . . . , en]) facts are observable.

Once de�ned the set of observable facts according to the testing scenario, we
rewrite the formula using them. For instance, let us suppose that the internal
state of sp is not observable, while the channel cSP2C is observable, we rewrite
the property (8) as follows:

G∀(sent(SP, SP, C, res(URI), cSP2C)⇒∃O statec(2, C, [SP, . . . , URI, . . .])) (9)

where res(URI) represents the resource returned by SP in step 7.

c idp i sp

S1. hReq(get, uri_i, nil, nil) S1. hReq(get, uri_sp, nil, nil)

A1. hRsp(c30x, sp, hBind(aReq(sp, idp,
id), uri_sp))

A1. hRsp(c30x, sp, hBind(aReq(sp, idp,
id), uri_sp))

A2. hReq(get, idp, hBind(aReq(sp, idp, id), uri_sp))

A3. hRsp(c200, nil, nil, form(pBind(sARsp(inv(kidp), sp, idp, c, id), uri_sp)))

A4. hReq(post, sp, nil, pBind(sARsp(...), uri_sp))

S2. hRsp(c200, nil, nil, res)

Fig. 3. Authentication Flaw of the SAML 2.0 Web
Browser SSO Pro�le

When the model
does not satisfy the
expected security prop-
erty, a counterexam-
ple (i.e. an attack
trace) is generated
and returned by the
model checker. A vi-
olation of the authen-
tication property (9),
as discussed in [4], is
witnessed by the at-
tack depicted in Figure 3. The attack involves four principals: a client (c), an
honest IdP (idp), an honest SP (sp), and a malicious service provider (i) and
comprises the following steps: c initiates the protocol by requesting a resource
uri_i at the SP i; i, pretending to be c, requests a di�erent resource uri_sp
at sp and sp reacts by generating an Authentication Request, which is then
returned to i; i maliciously replies to c by sending an HTTP redirect response
to idp containing aReq(sp, idp, id) and uri_sp (instead of aReq(i, idp, id_i),
and uri_i as the standard would mandate); the remaining steps proceed ac-
cording to the standard. The attack makes c consume a resource from sp, while
c originally asked for a resource from i.

4 Instrumentation

The model instrumentation is aimed at instructing the TEE on the generation
of outgoing messages and on the checking of incoming ones. Instrumenting a
model consists in calculating program fragments p associated to each rule of the
model. Program fragments are then evaluated and executed by the TEE (See
Section 5) in the order established by the Attack Trace.

Before providing further details we de�ne how we relate expressions with ac-
tual messages. As seen in Section 3, messages in the formal model are speci�ed

abstractly. For instance, a SAML request AuthnReq(IS,DS, IIreq, ACS, IDreq)
is modeled by the expression aReq(SP, IdP, ID) thereby abstracting IIreq. A fur-
ther abstraction step is done by modeling two �elds such as IS and ACS with
only one variable SP. Let D be the set of data values the messages exchanged
and their �elds. For instance, if AuthnReq(is, ds, ii, acs, id) is an element in D,
then also id, ds, ii, acs, and id are in D. Let E be the set of expressions used to
denote data values in D. An abstraction mapping α maps D into E.

Let D⊥ be an abbreviation for D∪{⊥} with ⊥ 6∈ D. Let f be a user de�ned
function symbol of arity n ≥ 0. Henceforth we consider constants as functions
of arity n = 0. We associate f to a constructor function and a family of selector
functions:

Constructor: f : Dn → D such that α(f(d1, . . . , dn)) = f(α(d1), . . . , α(dn))
for all d1, . . . , dn ∈ D;

Selectors: πi
f : D → D⊥ such that πi

f (d) = di if d = f(d1, . . . , dn) and π
i
f (d) =

⊥ otherwise, for i = 1, . . . , n.

with the following exceptions. With K ⊆ D we denote the set of cryptographic
keys. If k ∈ K, then inv(k) is the inverse key of k. If f = enc (asymmetric
encryption), then

1. π1
enc is unde�ned and

2. π2
enc : K ×D → D⊥, written as decrypt , is such that decrypt(inv(k), d′) = d

if d′ = encrypt(k, d) and decrypt(inv(k), d′) = ⊥ otherwise.

If f = senc, sdecrypt is de�ned similarly as above, replacing inv(k) with k.
We assume that the Adapter provides constructors and selectors as program
procedures. The association between symbols and procedures are speci�ed in
the Mapping (See Figure 1).

In the speci�cation of security protocols, the behavior of the principals is
represented in an abstract way, and thus the operations to check incoming mes-
sages and to generate outgoing ones are implicit. For example, in ASLan, mes-
sage checks are realized by pattern matching and �elds of the received message
must match with some expressions stored in the state of the agent. Outgoing
messages are calculated without specifying which operations are performed to
compute it. Therefore, in order to interact with a system under test, we need to
make explicit these procedures. We write these procedures as well as the TEE in
a pseudolanguage composed of statements such as if-then-else, foreach, and the
like. We also assume that the pseudolanguage has a procedure eval(p) in order
to evaluate a program fragment p. Let e be a ground expression in E. We call
`e a memory location in which a data value d ∈ D is stored such that e = α(d).

A data value d could be the result of the evaluation of a program fragment
p, i.e. d = eval(p). For the sake of simplicity, in the sequel we sometimes use
indi�erently the data value notation and the memory location containing it.
We use memory locations to refer to channels as well. Let `ci and `co be two
memory locations for the channel constants ci and co, respectively. Besides the
common operation of reading and writing on channels as memory locations, we

de�ne two operators to access them as pipes in order to send (i.e. `c >> `m)
and to receive data values (i.e. `c << `m). Also, we consider a further operation
to peek the �rst data value available in the pipe without removing it (i.e. `c |>

`m). The use of the latter operator will be clear to the reader when we explain
the Instrumentation for the intruder's rules.

4.1 Instrumentation of the rules of the honest agents

Let us consider the following example of ASLan rule:

sent (A, A, B, f({g(A, B, m)}sK, {h(A, K)}Kb), CA2B) �

stateb(1, B, [B, Kb, inv(Kb), m, CA2B, CB2A])
send

1,1
b (B,A,Kb,K,CA2B,CB2A)−−−−−−−−−−−−−−−→

stateb(2, B, [. . . , A, K]) � sent (B, B, A, f(B, m), CB2A) (10)

This rule can be executed only if the message received on the channel `CA2B
is

f(d1, d2)), where d1 can be decrypted only after having decrypted d2, containing
the data value of the decryption key K. Moreover d1 must be g(d3, d4, d5)), where
d3 is simply stored in `A, while d5 must be equal to `m, and d4 must be equal
to `B , given that the variables B belongs to the internal state of the agent. As
said, these checks are implicit in the ASLan semantics (pattern matching), as
well as the procedure necessary to construct the message `f(B,m), which is sent
on the channel `CB2A

. Nevertheless, for the testing purpose, we need to explicit
these procedures. They only depend on the structure of the rule and thus can
be precomputed. A program fragment p

send
j,k
r (a,...,ci,co)

encoding a rule (1) is as

follows:

`′mi
:= `mi

;

`ci >> `mi
;

if `′mi
is not empty and `mi

!= `′mi
then: return False;

eval(pmi);
`mo := eval(pmo);
`co << `mo

;

where mi and mo are the incoming and outgoing message respectively. The
fragment pmi checks whether `mi is such that mi = α(`mi) and pmo computes a
message `mo such that mo = α(`mo). In the sequel, we describe how to generate
automatically pmi

and pmo
for a generic ASLan rule (1).

We de�ne an association between an ASLan expression e and the fragment
p used to retrieve �accessing directly to memory locations or using selectors
operating on them� the corresponding data value denoted by e. We call p : e
an associated expression where e ∈ E and p is a program fragment �containing
selectors operating on memory locations� such that e = α(eval(p)).

With reference to the send rule (1), just after the reception of `mi
, the knowl-

edge of the principal is represented by the following set of associated expressions:
Ms = {`mi

: mi, `e1 : e1, . . . , `en : en}. Given Ms we need compute the associ-
ated expressions of each sub-term of mi.

De�nition 1 (Closure under decomposition). Given a setMs of associated
expressions, the closure of Ms under decomposition, in symbols ↓Ms, is the
smallest set such that:

1. Ms ⊆ ↓Ms,
2. if p1 : enc(k, e) ∈ ↓Ms and p2 : inv(k) ∈ ↓Ms, then (decrypt(p2, p1) : e) ∈
↓Ms,

3. if p1 : senc(k, e) ∈ ↓Ms and p2 : k ∈ ↓Ms, then (sdecrypt(p2, p1) : e) ∈ ↓Ms,
4. if p : f(e1, . . . , en) ∈ ↓Ms, then (πj

f (p) : ej) ∈ ↓Ms for j = 1, . . . , n.

Let us provide an example of closure. With reference to the rule (10), the set
Ms contains the associated expression for the incoming message `f(senc(...),enc(...)) :
f(senc(K, g(A,B, m)), enc(Kb, h(A,K))) and other expressions known by the
agent `B : B, `Kb : Kb, `inv(Kb) : inv(Kb), `m : m, `CA2B

: CA2B , and `CB2A
:

CB2A. By de�nition ↓Ms contains Ms and other associated expressions. For ex-
ample, we have `f(senc(...),enc(...)) : f(senc(. . .), enc(Kb, h(A,K))) ∈ Ms ⊆ ↓Ms
then π1

f(`f(senc(...),enc(Kb,h(A,K)))) : senc(. . .) and π2
f(`f(senc(...),enc(Kb,h(A,K)))) :

enc(Kb, h(A,K)) are in ↓Ms (case 4 of the de�nition). Given that `Kb : Kb is in
↓Ms, the case 2 is applicable, thus decrypt(`inv(Kb), π

2
f(. . .)) : h(A,K) ∈ ↓Ms as

well. The example can be easily extended to the other sub-terms of the message.
However, it already clari�es why we need the closure of the knowledge. Indeed,
the �rst part of the message f(. . .) is encrypted with K and it can be decrypted
only after having decrypted the second part, containing the key K. Notice that,
for the sake of simplicity, in this paper we assume atomic keys. Nevertheless the
approach described can be readily generalized to support composed keys.

After having computed all the associated expressions, we need to either check
or store the data values, according to the list of expressions representing the
internal state of the principal. With reference to the send rule (1), let kn =
{e1, . . . , en}, and Ms′ = ↓Ms− {`e1 : e1, . . . , `en : en}.

De�nition 2 (Atomic checks). The set of atomic checks Pmi
for a message

mi ∈ E over a knowledge kn is de�ned as follows:

1. for each p : e in Ms′, if either e is a constant or e is a variable, and e ∈ kn
then the following fragment is in Pmi :
if eval(p) != `e then: return false;

2. for each p1 : e, . . . , pn : e in Ms′, if e is a variable, and e 6∈ kn then the
following fragment is a member of Pmi

:
`e := eval(p1);
if (`e!=eval(p2) or `e!=eval(p3) or . . . or `e!=eval(pn))
then: return false;

For instance, let us consider the rule (10), the following checks are in Pf(...):

1. if eval(π3
g(sdecrypt(π

2
h(. . .), π

1
f(. . .)))) != `m then: return false;

if eval(π2
g(sdecrypt(π

2
h(. . .), π

1
f(. . .)))) != `B then: return false;

2. `A := eval(π1
h(decrypt(`inv(Kb), π

2
f(. . .))));

if (`A!=eval(π
1
g(sdecrypt(π

2
h(. . .), π

1
f(. . .))))) then: return false; . . .

Program fragment pmi
is a sequence of all the items in Pmi

.

De�nition 3 (Message generation function). We call message generation
function over a set of expressions kn a function MsgGen de�ned as follows:

1. MsgGen(e) = `e if e ∈ kn;
2. MsgGen(f(e1, . . . , en)) = f(MsgGen(e1), . . . ,MsgGen(en))

With reference to the send rule (1), the program fragment pmo
is calculated

by MsgGen(mo) over kn = {e′1, . . . , e′q}.

4.2 Instrumentation of the rules of the intruder

Intercept and overhear rules Let us consider the intercept rule (4) in Sec-
tion 3. Let M be the message. The fragment pintercept(A,B,M,C) of pseudocode
encoding the rule is as follows:

`′M := `M ;

`c >> `M ;

if `′M is not empty and `M != `′M then: return False;

where `′M contains the previous value (if any) in `M , before the reception of
the new message. The fragment of pseudocode encoding the overhear rule (4) in
Section 3 is the same as the one de�ned above, except from the operator |> in
place of >>.

Decomposition rules Let us consider the rules modeling the ability of decom-
posing messages (i.e. decrypt, sdecrypt, and decompose).

The fragment of pseudocode pdecrypt(M,...) encoding the rule (4) is as follows:

`M := eval(decrypt(`inv(K), `{M}K));

where M and K are two ASLan expressions for the message and the public key,
{M}K is the asymmetric encryption of M with K, and decrypt is the selector
function associated to enc. Similarly for psdecrypt(...) encoding the rule (5).

The fragment pdecomposef (M1,...,Mn) encoding the rule (6) is as follows:

`M1
:= eval(π1

f (`f(M1,...,Mn)));
...

`Mn
:= eval(πn

f (`f(M1,...,Mn)));

where f(M1, . . . ,Mn) is the message the intruder decomposes, and πi
f for i =

1, . . . , n are the selector functions associated to the user function symbol f .

Composition rules Let us consider the impersonate rule (7) in Section 3.
The fragment of pseudocode p

impersonate
j,k,l
r (...) encoding this rule is computed

by MsgGen(m′) over the knowledge kn = {m1,l, . . . ,mjl,l}.

5 Test Case Execution

The Test Execution Engine (TEE) takes as input a SUT Con�guration, describ-
ing which principals are part of the SUT, and an Attack Trace. The operations
performed by the TEE are as follows:

1 procedure TEE(SUT :Agent Set;[step1, . . . , stepn]:Attack Trace)
2 for i:=1 to n do:

3 if not(stepi == sendj,kr (a, . . .) and a ∈ SUT) then:

4 if not eval(pstepi
) then:

5 printf ("Test execution failed in step %s", stepi);
6 halt;

The TEE iterates over the attack trace provided as input. During each iteration
it checks whether the rule stepi must be executed (line (3)). Namely, if stepi is
either an intruder's rule or a rule concerning an agent that is not under test, then
the program fragment pstepi is executed. If pstepi is executed without any errors
the procedure continues with the next step, otherwise (lines (5)�(6)) noti�es that
an error occurred.

6 Experimental Results

In order to assess the e�ectiveness of the proposed approach, we have developed
a prototype of the architecture depicted in Figure 1.

We have implemented the Instrumentation, the TEE and the Adapter com-
ponents in Java. The Model Checking module is the SATMC model checker
tool [2] taken o�-the-shelf from the AVANTSSAR Platform. The Instrumenta-
tion component takes an ASLan model and the Mapping as input. It produces
program fragments in a Java class. The TEE instantiates the class and executes
the attack trace as described in Section 5. The Adapter implements the con-
structor and selector functions de�ned in Section 4. For example, constructors
and selectors for the HTTP protocol are available in a Java class called adapter

.Http that is built upon the Apache HttpComponents (http://hc.apache.
org/). Those for the SAML SSO protocol in a class called adapter.Saml that is
based on OpenSAML (https://wiki.shibboleth.net/confluence/display/
OpenSAML/Home). These functions are used by program fragments as described
in Section 4.

We extended the formal model of the SAML SSO we developed in previous
work [4] by modeling messages using ASLan expressions as seen in Section 3. We
provided the formal model to the model checker together with the authentication
property (9). The model checker found the attack trace depicted in Figure 3.

We have tested two Web-based SSO solutions freely available on-line, the
SAML-based SSO for Google Apps (http://code.google.com/googleapps/
domain/sso/saml_reference_implementation.html) and the SimpleSAMLphp
SSO service o�ered by Foodle, a surveys and polls on-line service (https://
foodl.org). We have speci�ed two mappings, one for each solution. For example,

the mapping for testing SAML-based SSO for Google Apps contains associations
as urisp = "http://mail.google.com/a/ai-lab.it/h" and hReq = adapter.Http
where urisp, hReq are constructor functions.

We have run the prototype against the SAML-based SSO for Google Apps
by using the set {idp, sp} as SUT Con�guration. The SP is the Google GMail
service while the IdP is a local identity provider service at the AI-Lab. The TEE
automatically executed the attack traces till the message S2 of Figure 3 and,
as expected, the message S2 contains the mailbox of the user. Therefore, the
prototype was able to automatically detect the authentication �aw.

We have used the same SUT Con�guration in the experiment with Sim-
pleSAMLphp. In this case we used Foodle as SP and Feide OpenIdP iden-
tity provider (https://openidp.feide.no) as IdP. The execution of the attack
failed when message S2 was received. The analysis of exchanged messages has
revealed that SimpleSAMLphp returns an error message instead of the message
S2. We identi�ed the cause in additional checks that reinforce the binding be-
tween authentication requests and responses. These checks are based on cookies
and, since the authentication request is never routed through c, no cookies are
installed in c. Therefore, when c presents an authentication response at sp, it
fails in restoring the local user session for c.

7 Related Work

Automated analysis of security protocols has been studied and several analysis
tools have been developed (see e.g., [1, 10, 24]). Also, there have been applications
of model checking to the security analysis of Web Services (e.g., [8, 17, 27]). These
approaches mostly focus on design time veri�cation, and fall short in validating
whether the real systems satisfy the desired properties in later life stages. Model-
based testing has been applied to security-relevant systems in the recent past,
e.g., [25, 26]. These approaches do not propose a coherent generic methodology
for security testing. Also, mappings between the abstract and concrete levels are
currently managed in an ad-hoc manner only [30].

Model-checkers have been already proposed for testing by interpreting coun-
terexamples as test cases. (See [16] for a survey). However there is no systematic
approach for execution and interpretation of counterexamples.

Security-speci�c mutation operators have been considered in order to intro-
duce implementation-level vulnerabilities into models [12, 14]. These approaches
focus on detecting implementation-level vulnerabilities. They extend and com-
plete the one we presented. Indeed, when a model is secure with respect to a
security property, it is mutated by using a security-speci�c mutation operator.
Moreover, it does not only consider logical �aw but also vulnerabilities at the
implementation level.

TorX is an automated model-based testing tool that aim at improving the
quality of the software in an on-the-�y manner [29]. Its architecture has a module
providing a connection with the SUT in order to send input and receiving output.
However, more generic approaches for implementing adapters are needed.

An approach for model-checking driven security testing is proposed in [5].
Although the approach is protocol independent, it is strictly focused on the
concretization of abstract messages in order to derive concrete test cases.

The automated tool Tookan [11] is based on an approach similar to the one we
described. It reverse-engineers a real PKCS#11 token to deduce its functionality,
constructs a model of its API for the SATMC model checker, and then executes
any attack trace found by the model checker directly on the token. Nevertheless,
this approach is speci�c for the PKCS#11 security tokens.

8 Conclusions

In this paper we proposed an approach that supports the binding of speci�cations
of security protocols to actual implementations through model instrumentation,
and the automatic testing of real implementations against putative attacks found
by a model checker. The approach consists in model checking a formal model
looking for a counterexample (i.e. attack trace) violating a security property.
In case an attack is returned, it calculates automatically program fragments
encoding how to verify and generate protocol messages. The attack trace is
interpreted and the program fragments are executed accordingly.

In order to assess the e�ectiveness of the proposed approach we developed
a prototype and used it to test two Web-based Single Sign-On (SSO) solutions
that are available on-line, namely the SAML-based SSO for Google Apps and
the SimpleSAMLphp SSO service o�ered by Foodle. The prototype is able to
successfully execute an attack on the Google service. The prototype also shows
that the same attack does not succeed against the SSO service of Foodle, due to
speci�c implementation mechanisms used by SimpleSAMLphp.

Application of our techniques on other protocols (e.g. OpenID, OAuth) is
under way and con�rms the viability of the approach.

References

1. A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuellar, P. Han-
kes Drielsma, P.-C. Heám, J. Mantovani, S. Mödersheim, D. von Oheimb, M. Rusi-
nowitch, J. Santiago, M. Turuani, L. Viganò, and L. Vigneron. The AVISPA Tool
for the Automated Validation of Internet Security Protocols and Applications. In
Proc. of CAV05.

2. A. Armando, R. Carbone, and L. Compagna. LTL Model Checking for Security
Protocols. In Journal of Applied Non-Classical Logics, 2009.

3. A. Armando, R. Carbone, L. Compagna, J. Cuellar, and L. T. Abad. Formal
Analysis of SAML 2.0 Web Browser Single Sign-On: Breaking the SAML-based
Single Sign-On for Google Apps. In Proc. of ACM FMSE08.

4. A. Armando, R. Carbone, L. Compagna, J. Cuellar, G. Pellegrino, and A. Sorniotti.
From multiple credentials to browser-based single sign-on: Are we more secure? In
Proc. IFIP TC SEC2011.

5. A. Armando, R. Carbone, L. Compagna, K. Li, and G. Pellegrino. Model-checking
driven security testing of web-based applications. In Proc. of ICSTW2010.

6. A. Armando and L. Compagna. Automatic SAT-Compilation of Protocol Insecu-
rity Problems via Reduction to Planning. In Proc. of FORTE 2002.

7. AVANTSSAR. Deliverable 2.1: Requirements for modelling and ASLan v.1. Avail-
able at http://www.avantssar.eu, 2008.

8. M. Backes, S. Mödersheim, B. P�tzmann, and L. Viganò. Symbolic and Crypto-
graphic Analysis of the Secure WS-ReliableMessaging Scenario. In Proc. of FOS-
SACS'06.

9. J. Bau, E. Bursztein, D. Gupta, and J. Mitchell. State of the art: Automated
black-box web application vulnerability testing. In Security and Privacy (SP),
2010 IEEE Symposium on, 2010.

10. B. Blanchet. Automatic veri�cation of cryptographic protocols: A logic program-
ming approach (invited talk). In Proc. of PPDP'03.

11. M. Bortolozzo, M. Centenaro, R. Focardi, and G. Steel. Attacking and �xing
PKCS#11 security tokens. In ACM Conf. on CSS.

12. M. Büchler, J. Oudinet, and A. Pretschner. Security mutants for property-based
testing. In TAP 2011.

13. J. Clark and J. Jacob. A Survey of Authentication Protocol Literature: Version
1.0, 17. Nov. 1997. URL: www.cs.york.ac.uk/~jac/papers/drareview.ps.gz.

14. F. Dadeau, P.-C. Héandam, and R. Kheddam. Mutation-based test generation
from security protocols in HLPSL. In ICST 2011.

15. A. Doupé, M. Cova, and G. Vigna. Why johnny can't pentest: an analysis of
black-box web vulnerability scanners. In Proc. DIMVA 2010.

16. G. Fraser, F. Wotawa, and P. Ammann. Testing with model checkers: a survey.
Softw. Test., Verif. Reliab. 2009, 19.

17. M. Hondo, N. Nagaratnam, and A. Nadalin. Securing web services. IBM Systems
Journal, 41(2):228�241, 2002.

18. F. Jacquemard, M. Rusinowitch, and L. Vigneron. Compiling and Verifying Secu-
rity Protocols. In Proc. of LPAR 2000.

19. G. Lowe. A hierarchy of authentication speci�cations. In Proc. of the 10th IEEE
CSFW '97.

20. G. Lowe. Breaking and Fixing the Needham-Schroeder Public-Key Protocol Using
FDR. In Proc. of TACAS'96, 1996.

21. W. Marrero, E. M. Clarke, and S. Jha. Model checking for security protocols. tech.
report cmu-scs-97-139. Technical report, CMU, May 1997.

22. J. K. Millen and V. Shmatikov. Constraint solving for bounded-process crypto-
graphic protocol analysis. In Proc. of ACM CCS'01.

23. OASIS. SAML V2.0. http://docs.oasis-open.org/security/saml/v2.0/, 2005.
24. P. Ryan, S. Schneider, M. Goldsmith, G. Lowe, and B. Roscoe. Modelling and

Analysis of Security Protocols. Addison Wesley, 2000.
25. P. A. P. Salas, P. Krishnan, and K. J. Ross. Model-based security vulnerability

testing. Australian Software Engineering Conf., 0:284�296, 2007.
26. P. P. Salas and P. Krishnan. Testing privacy policies using models. In Proc. of

SEFM '08.
27. G. Salaün, L. Bordeaux, and M. Schaerf. Describing and reasoning on web services

using process algebra. In Proc. of ICWS'04.
28. V. Shmatikov and J. C. Mitchell. Finite-state analysis of two contract signing

protocols. Theoretical Computer Science, 283(2):419�450, June 2002.
29. G. J. Tretmans and H. Brinksma. Torx: Automated model-based testing. In First

European Conf. on Model-Driven Software Engineering.
30. M. Utting, A. Pretschner, and B. Legeard. A taxonomy of model-based testing.

Technical report, University of Waikato, New Zealand.

