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Abstract—Crawlers are critical for ensuring the dependability
and security of web applications by maximizing the code cov-
erage of testing tools. Reinforcement learning (RL) has recently
emerged as a promising approach to improve crawler explo-
ration. However, existing approaches based on Q-learning face
two major limitations: being state-based, they rely on brittle state
abstractions that fail to generalize across diverse applications,
and they employ rewards that prioritize underused actions but
are not necessarily proportional to the improvement in code
coverage. In this paper, we first substantiate the limitations
of two popular Q-learning-based crawlers. We then propose
Multi-Armed Krawler (MAK), a new crawler based on the
Adversarial Multi-Armed Bandit problem. MAK is stateless and
does not require the definition of brittle state abstractions that
do not generalize to new web applications. By modeling the
crawling process through a traditional graph abstraction and
introducing an extrinsic reward correlated with code coverage,
MAK compensates for the loss of expressiveness coming from
its stateless nature. Our experimental results on public web
applications show that MAK achieves greater coverage and faster
convergence than its counterparts.

I. INTRODUCTION

Web applications routinely manage critical operations for
industries, such as financial transactions and e-commerce, and
therefore must be dependable and secure to protect sensitive
assets and maintain company reputations. To achieve this, web
applications are typically assessed using black-box techniques.
These methods focus on crafting and inspecting HTTP traf-
fic rather than analyzing source code, primarily because of
the inherent complexity of multi-tier architectures (frontend,
backend, and database), the diversity of backend scripting lan-
guages, and the frequent unavailability of the source code, e.g.,
when performing penetration testing [1]. Black-box analysis
of a web application is inherently dynamic, as it depends on
exploring a substantial portion of the testing surface of the
web application. This has led to significant interest in web
crawling, i.e., techniques to explore the functionalities of web
applications by actively navigating their pages. Starting with
a set of seed URLs, web crawlers interact with web pages to
discover new functionalities and URLs for further exploration.
Effective web crawling is critical for black-box testing, as
inadequate coverage can leave issues undetected.

Seminal work on web crawling has explored strategies
and heuristics to enhance the efficiency of web application
exploration [2], [3], [4], [5], [6]. More recently, approaches

based on reinforcement learning (RL) have been proposed to
learn effective crawling policies, like WebExplor [7] and QEx-
plore [8], that exploit Q-Learning [9]. Their design requires to
face the challenges of formulating the web crawling problem
in terms of RL. For example, traditional RL approaches rely on
state transition systems, requiring careful abstraction functions
to represent web pages as states [7], [8]. WebExplor addresses
this problem by encoding a state as a pair including the
URL of the page and the page tags, while QExplore uses
the sequence of attribute values of the unique interactable
elements of the page. Similarly, RL requires also the definition
of reward functions that provide feedback to train the policy.
Both crawlers adopt curiosity-driven rewards [10], [11], [12],
assigning higher rewards for novel interactions with the web
application. This approach compensates for the lack of server-
side visibility inherent to black-box testing.

We believe that research on the adoption of RL for web
crawling has merits, because it explored the use of a natural
and successful learning technique in a prominent research
field. Still, our experience in using these RL-based crawlers
reveals that the specific design choices adopted by state-of-
the-art RL-based crawlers present some problems. First, the
adopted heuristics for state abstraction are too brittle and may
not perform well on all the web applications. This causes
the creation of too many states by the crawler, making it
difficult to learn the policy. Second, the curiosity-driven reward
mechanism is short-sighted. It prioritizes exploring actions
used only a few times without considering their contribution
to activating new server-side code. Consequently, the crawler
may assign high rewards to unproductive actions while under-
valuing fruitful ones.

In this paper, we claim that less is more: the more we
simplify the application of RL, the better it generalizes to
different web applications. Concretely, we propose a novel
crawling approach where the crawler learns an optimal naviga-
tion policy in a stateless manner by integrating three strategies
inspired by the well-established navigation strategies: breadth-
first search, depth-first search, and random, traditionally based
on a graph abstraction of the web application. It has been
shown that one of these three strategies can provide the
best performance in code coverage, depending on the specific
explored web application [13]. Our approach treats a crawler
as an Adversarial Multi-Armed Bandit (AdvMAB) [14], [15]
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agent, where the agent learns the probability of each action
through a reward function that evaluates link coverage, i.e.,
the new links gathered as a result of the selected action. We
choose adversarial MAB to allow the crawler to adapt the
probability to select a specific navigation strategy through
time, since different parts of the web application may have
different best exploration strategies. We implement this ap-
proach in a crawler called Multi-Armed Krawler (MAK), and
we evaluate it on a set of popular web applications, showing
that it outperforms other RL-based crawlers in terms of code
coverage and convergence speed.

In summary, our contributions are: (1) We criticize the
design choices of two existing RL-based solutions for web
crawling, providing concrete examples based on real-world
applications. (2) We propose a new approach to web crawling
based on a simpler RL problem (AdvMAB) and a more
informative reward than the ones previously considered. This
framework naturally solves many of the challenges faced by
the current state of the art. (3) We evaluate our proposal on
popular web applications, showing that our approach pays off.

II. BACKGROUND

A. Reinforcement Learning

RL problems involve an agent learning by interacting with
an environment [9]. At each time step t, the agent is in a
state s ∈ S and has to choose an action a ∈ A to interact
with the environment. After executing the action, the agent
receives a reward rt ∈ R as a consequence of reaching a state
s′ ∈ S. The learning objective is to determine the sequence of
actions that maximize the cumulative reward over time, i.e.,
the agent learns a policy π : S × A → [0, 1], mapping each
state to the probability of selecting each action to maximize
the cumulative reward. The policy π is consulted every time an
agent enters a given state to identify the best action to perform
there, and the agent moves into another (possibly new) state
by executing the chosen action. Solving algorithms for RL
problems must typically deal with the trade-off of exploring
the environment and exploiting the learned policy to maximize
the cumulative reward. Several scenarios have been explored
in RL, depending on how the learning process is modeled and
the assumptions on the nature of the rewards.

1) Q-Learning: A popular solution for RL problems is
the Q-Learning algorithm, that iteratively learns a function
Q : S × A → R estimating the quality of each state-action
combination. Before learning begins, Q is initialized to a
possibly arbitrary fixed value. At time t, the agent in state
s executes an action a and enters a new state s′, receiving a
reward rt. The value Q(s, a) is then updated using rt through
the Bellman equation [9]. The action chosen at each time step
through the policy π is obtained by prioritizing the action with
the highest value in Q, which can be implemented through
different strategies. Different representations of the Q-function
have been proposed in the literature [9].

2) Adversarial Multi-Armed Bandit: A specific type of
RL problem called Multi-Armed Bandit (MAB) is formally
equivalent to learning a policy where S contains just a single

Algorithm 1 Exp3.1 algorithm

1: Input: Number of arms K and total time budget T
2: t← 0
3: Ĝi = 0 for i = 1, . . . ,K
4: while t < T do
5: for m = 0, 1, 2, . . . do
6: gm = K lnK

e−1 4m

7: γm = min
(
1,
√

K lnK
(e−1)gm

)
8: wi = 1 for i = 1, . . . ,K
9: while maxi Ĝi ≤ gm −K/γm do

10: π(i) = (1 − γm) wi∑K
j=1 wj

+ γm

K , for i =

1, . . . ,K
11: Choose the action a sampling from policy π
12: Obtain the reward rt by executing a

13: r̂t,i =

{
rt
π(i) if i = a

0 otherwise.

14: wi = wi exp
(

γmr̂t,i
K

)
for i = 1, . . . ,K

15: Ĝi = Ĝi + r̂t,i for i = 1, . . . ,K
16: t← t+ 1

state. In the case of MAB, the set of actions A is defined
as {1, . . . ,K}, i.e., it contains K actions, called arms, and
the policy to learn has the simpler form π : A → [0, 1]. In
this paper, we are interested in the AdvMAB formulation [14]
where there is no statistical assumption about the process
generating the rewards over time, but it is assumed that an
adversary sets the reward simultaneously with each action.
This means that the distribution of the rewards for each action
may change over time. A solution for AdvMAB is the Exp3.1
algorithm [15], shown in Algorithm 1.

The algorithm takes as input the number of arms K and
the total time budget T . The algorithm starts by initializing
the estimated gain Ĝi of each action i to 0 and chooses
the next action to perform at the time step t until the total
time budget T has been reached. It operates in epochs, i.e.,
different exploration phases, each with a different estimate
gm and learning rate γm, with action weights wi initially
set to 1 (lines 6-8). The adoption of the epochs mechanism
ensures that the learning rate is progressively reduced as more
information on the gain of the actions is gathered, ensuring
proper tradeoff between exploration and exploitation. Each
epoch lasts until the maximum estimated gain of the actions
exceeds the quantity gm − K/γm (line 9). At each time
step, the algorithm updates the policy π based on the current
weights and learning rate; the policy is then used to sample
the next action a to perform at time step t. The corresponding
reward rt is then used to update the estimated rewards r̂t,i of
the actions (lines 10-13), that are the reward divided by the
probability of each action, to compensate for actions that have
a small probability of being selected. Afterward, the weights
of the actions and the estimated gains are updated using the
estimated rewards and the learning rate before moving to the
next time step (lines 14-16).
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Algorithm 2 General RL-based web crawling algorithm

1: Input: The start page p and the total time budget T
2: π ← INIT() ▷ Initialize the policy
3: t← 0
4: s← GET STATE(p) ▷ Get the initial state
5: while t < T do
6: A ← GET ACTIONS(p) ▷ Get the set of actions
7: a← CHOOSE ACTION(π, s,A) ▷ Check the policy
8: p′ ← EXECUTE(p, a) ▷ Navigate the crawler
9: s′ ← GET STATE(p′) ▷ Get the new state

10: r ← GET REWARD(s, a, s′) ▷ Get the reward
11: π ← UPDATE POLICY(π, r, s, a, s′) ▷ Policy update
12: p← p′

13: s← s′

14: t← t+ 1

B. Web Crawling

The core principle of a web crawler is an iterative interaction
with a target web application. In this work, we assume that the
crawler interacts with web applications in a black-box fashion,
i.e., without accessing the source code of the web application
on the server side. Only the Document Object Model (DOM)
of each page of the web application is accessible. This is a
widely adopted assumption in the literature [3], [6], [7], [8].

The crawler starts at a seed URL and iteratively extracts
interactable elements of web pages (links, buttons, etc...) to
schedule them for interaction. Each visited page contributes
to the pool of elements, while the scheduling algorithm of the
crawler defines the order of interaction with the pool, i.e., the
navigation strategy. The most common algorithms are breadth-
first (BFS), depth-first (DFS), and random choice [13], that
abstract the web application as a graph. BFS traverses a web
application by always picking the least recently discovered
element, while DFS prioritizes the new elements over the old
ones. A random strategy would pick elements from the pool in
a randomized fashion. A typical goal of an effective crawler is
maximizing code coverage, i.e., the number of lines of server-
side code activated by crawling the web application. Improving
code coverage is useful to ensure that more components of the
backend are tested, e.g., for potential security issues.

C. RL for Web Crawling

Among the solutions proposed for performing a dynamic
black-box exploration of web applications, RL-based ap-
proaches are prominent [7], [8], [16]. Algorithm 2 describes
a generic implementation of a RL-based web crawler. The
crawler receives as input the start page p of the web application
under test and the total time budget T given to perform the
exploration. The exploration starts by initializing the policy
π to some default value. Then, it iterates by finding a state
abstraction of the current web page and scheduling the next
action to perform as the best action for the current state, based
on the currently learned policy. After executing the action, the
crawler gets a reward, which is used to update the policy for
the next iteration.

III. LIMITATIONS OF EXISTING RL-BASED CRAWLERS

WebExplor [7] and QExplore [8] represent state-of-the-
art RL-based solutions for web crawling. They employ Q-
Learning to instantiate the main building blocks of Algo-
rithm 2. WebExplor implements the UPDATE POLICY as de-
fined by the Bellman equation, while QExplore modifies the
update to guide the crawler to states with more actions.
Their implementation of CHOOSE ACTION also differ: We-
bExplor uses the Gumbel-softmax strategy [17] to choose
the action, while QExplore privileges a deterministic strategy
which always picks the action with the highest Q-value. There
are also some small differences in the implementation of
the GET ACTIONS function as well, with the two crawlers
supporting different types of operations over web pages, e.g.,
filling inputs in a sophisticated way.

In this paper though, we want to focus on the definitions
of the GET STATE and GET REWARD functions, since they
present conceptual limitations that affect the effectiveness of
these two crawlers in practice. We now discuss them by pre-
senting examples found by testing WebExplor and QExplore
on real applications, using the setup described in Section V.

A. State Abstraction

WebExplor and QExplore abstract the state of the explored
web application to define the states of the underlying Q-
Learning problem. Specifically, they represent states by first
applying a pre-processing function to the page, that captures
the relevant information for the state abstraction, and then
using a similarity function to establish whether the encountered
state is new or an existing one. The two functions are tied
since they aim to satisfy two complementary objectives. On the
one hand, the pre-processing function should model sufficient
information to let the state represent a meaningful part of the
interaction of the agent with the environment. On the other
hand, the similarity function should limit the number of states,
otherwise the agent would observe artificial differences and the
RL solving algorithm would not be effective due to the state
explosion problem. Ideally, the state abstraction should group
the visited web pages such that (i) web pages that share the
same business logic (same server-side code) are mapped to
the same state and (ii) web pages with different business logic
(different server-side code) are mapped to different states. We
show below that this may not be the case given the specific
design choices of the two crawlers.

The pre-processing function employed by WebExplor ab-
stracts a web page as a pair including the URL of the page
and the sequence of its HTML tags. The similarity function,
instead, operates by first performing exact URL matching over
the existing states. If the URL of the page is not new, then the
HTML tags of the page are compared against existing states
using a pattern matching algorithm to determine whether to
create a new state. If the URL is new, instead, a new state
is created. This approach is brittle, because an exact URL
matching might lead to the artificial creation of new states. For
example, consider HotCRP [18], a popular web application for
managing conference review processes (top part of Figure 1).
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HotCRP - WebExplor
Webpages

Pre-Proc
function

(https://<hotcrp_domain>/review.php/8?r=23,
 tag_seq)

(https://<hotcrp_domain>/review.php/8?m=re,
 tag_seq)

Similarity
function

Abstraction

review web page
with tag sequence

tag_seq

Pre-Proc
function

Drupal - QExplore
Webpages

Pre-Proc
function

Similarity
function

Abstraction

User's private page to set
shortcut links containing 

elements .
 is an added shortcut

link

Pre-Proc
function

WRONG!

WRONG!

Fig. 1: Examples of the limitations of the state abstractions
performed by WebExplor and QExplore.

Suppose a reviewer with ID 23 is logged in and is assigned
paper 8, whose review form can be accessed via two different
links. The two links contain distinct query parameters, r and
m, in bold in the figure. Although both links lead to the same
review form, the similarity function of WebExplor treats the
corresponding states as different due to the usage of exact URL
matching. It might be tempting to just relax the URL matching
algorithm by ignoring the query string entirely. However, this
approach would be inappropriate for certain web applications
that dynamically generate content based on query parameter
values, a common pattern in PHP applications. For instance,
Matomo [19], a popular web analytics platform, generates
web pages dynamically depending on the value of the query
parameter module. Different values of the module parameter
correspond to distinct parts of the application that require test-
ing. For example, setting module to CoreAdminHome displays
the user settings interface, whereas using the value MultiSites
generates a page listing all the dashboards. Ignoring the query
string in such cases would lead to critical parts of the web
application being overlooked during testing.

Besides the challenges of URL matching, comparing HTML
tags is difficult and error-prone as well, as observed by the
authors of QExplore. To mitigate this, QExplore improves
upon WebExplor by employing a pre-processing function that
abstracts a web page into a sequence of attribute values of the
interactable elements of the page. The similarity function then
compares the hash of the string representations of the resulting
states. Unfortunately, also this approach is far from perfect.
We show an example from the popular content management
system Drupal [20] (bottom part of Figure 1). Drupal allows
users to add shortcut links to their homepage via a shortcut
module located on a specific private page of the user. Adding
a shortcut link results in the appearance of a new link on this
private page, while the other interactable elements of the page
remain unchanged. Suppose that QExplore adds a new link
when interacting with the page. This link will be an arbitrary
string triggering a navigation error, because QExplore has no
understanding of the web application semantics and cannot
generate valid links. When QExplore processes the private

page extended with the new link, the abstraction captures the
sequence of attribute values of its n interactable elements Ei

and the new link a1. However, adding a different link a2 in the
same way changes the sequence of elements, forcing QExplore
to create a new state for the private page. This can be done an
unbounded number of times, yet the new state is unnecessary
for effectively crawling the web application, because all the
new links trigger navigation errors. This discussion shows
that designing an effective state abstraction that generalizes
to different web applications is a challenging problem that
may not have an optimal solution.

B. Reward Function

Common RL tasks typically expect the agent to reach
a clear and visible goal, e.g., winning a computer game,
which simplifies the definition of the reward due to the
straightforward success or failure signals. Instead, defining a
meaningful reward for the task of exploring a web application
in a black-box setting is more challenging, because there is
no visibility of the explored surface of the web application.
To address this, both WebExplor and QExplore leverage an
intrinsic reward, which depends on the internal state of the
agent (the crawler), rather than the external state of the
environment (the web application). Although details slightly
differ, both WebExplor and QExplore employ a curiosity-
based reward [11], [12], which encourages the agent to explore
unvisited parts of the application. For example, WebExplor
uses counters to track the frequency of actions in a given state
and assigns higher rewards to less frequently executed actions.
While this approach pushes the crawler into getting higher
code coverage, it is sub-optimal as it allows the crawler to
execute the same action multiple times, irrespective of whether
the action triggers a relevant side effect on the server side.
For example, WordPress [21] ships a search engine to easily
navigate internal pages. Since queries to the search engine are
read from the server but do not modify its state, performing
the same search action multiple times is generally not useful
for discovering new parts of the web application. Although
performing the same action multiple times is discouraged
by the curiosity mechanism, the crawler does not obtain
any useful information from the returned page, i.e., it does
not leverage the observation that the search results have not
changed. Ideally, we would like to design a reward function
that pushes the crawler into taking the same action multiple
times only when there is some evidence that this might yield
potential benefits in terms of code coverage.

IV. CRAWLING USING MULTI-ARMED BANDIT

We now introduce MAK, our crawler designed to address
the limitations of state-of-the-art Q-Learning-based crawlers.
MAK leverages the adversarial MAB problem, that allows
us to define a simpler yet more effective solution compared
to WebExplor and QExplore. In the following sections, we
discuss the abstractions employed by MAK and its capabilities,
summarized in Table I.
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TABLE I: Summary of the components of the reviewed RL-based crawlers and our proposal.

Tool State Abstraction Action Definition Reward Policy Update Action Selection

WebExplor URL + sequence of HTML tags interactable DOM elements Curiosity Q-Learning update Gumbel-softmax

QExplore Sequence of attribute values
of interactable DOM elements interactable DOM elements Curiosity Modified Q-Learning update Maximum Q-value

MAK Stateless Head, Tail, Random Link coverage Exp3.1 Exp3.1

A. State Abstraction
We already discussed that it is difficult to define a one-

size-fits-all state abstraction which generalizes to different
web applications, because web developers use different pro-
gramming conventions. To address this, we adopt a stateless
representation of the RL problem based on MAB. While
this approach may at first seem less expressive compared
to the current state-of-the-art, a key claim of this paper is
that less is more: since state information is so difficult to
exploit in the undisciplined setting of web applications, we
take a state-agnostic stand by moving away from Q-learning.
The expressiveness of our approach lies instead in the careful
design of both the action space and the reward.

B. Action Definition
Since our crawler is stateless, we do not keep track of

which actions are available depending on the current state of
the web application, as done by WebExplor and QExplore.
We take a different approach and consider actions inspired
by well-known crawling algorithms. In particular, a recent
survey on web crawling [13] underlines that the most popular
navigation strategies used in web crawling are BFS, DFS,
and Randomized strategies (described in Section II-B) that
rely on a traditional graph abstraction of the web application.
These strategies operate independently of the state of the web
application and rely instead on the order in which interactable
elements are collected. A major insight of the aforementioned
survey is that there is no single strategy which optimally gener-
alizes to different web applications, i.e., different applications
benefit from different navigation strategies. Our idea is then
to let the crawler learn how to interleave the three different
strategies. Concretely, when MAK visits a web page, it first
extracts interactable elements and stores them in a deque1.
The deque is global and shared across different web pages.
At each time step, the crawler chooses one of three actions
A = {Head,Tail,Random} inspired by the three navigation
strategies discussed above: (i) Head extracts and interacts
with the element at the head of the deque, that corresponds
to the least recently discovered interactable element. This
action simulates BFS if it is always selected. (ii) Tail extracts
and interacts with the element at the tail of the deque, that
corresponds to the newest action discovered by the crawler.
This action simulates DFS if it is always selected. (iii) Random
extracts and interacts with a random element of the deque. The
Random action is useful to escape cases where a sequence of
Head and Tail actions does not improve the reward.

1A double-ended queue (deque) is a generalization of a queue, for which
elements can be added to or removed from either the front or back.

Even though the exclusive use of curiosity in WebExplor
and QExplore might miss useful information about the cover-
age of the web application, the rationale behind the curiosity
mechanism is sound: encouraging the crawler to prioritize
never-seen pages. We consider a different solution while inte-
grating the curiosity principle in our approach by enriching the
definition of the action. In particular, we actually implement
our deque data structure as a list of deques, each one with
an associated level i ∈ N0. The deque at level i contains all
the interactable elements extracted by the crawler from the
pages in the previous interactions with the web application
that have already been interacted with by the crawler i times.
Then, when one of three actions is executed, the interactable
element is extracted from the head, the tail, or randomly from
the deque at the lowest level. In this way, we incentivize the
crawler to try the least explored actions in general, emulating
the curiosity mechanism, and the crawler continues to exploit
the three state-agnostic navigation strategies.

Finally, note that the use of a deque does not compro-
mise our stateless abstraction. In previous formulations of
web crawling as a RL problem, states and actions encode
information about the web application state and the available
actions at that state. In contrast, our deque only tracks action
availability independently of the state of the web application.
This information is not used to model the environment or
train the policy, thus no details about the web application are
encoded in states of the RL problem formulation.

C. Reward Function

Curiosity is a reasonable reward to encourage the crawler
to explore new parts of the web application. Unfortunately, as
we explained, curiosity is not necessarily correlated with code
coverage, which is the main measure that web crawlers try to
optimize [6]. Indeed, curiosity treats two interactable elements
used the same number of times as equivalent, even though
only one may contribute to increasing the code coverage. For
example, consider a shopping webpage with a purchase button
for a shopping cart and a link to a frequently asked questions
(FAQ) page. Initially, the crawler presses the button with an
empty cart, triggering server-side code that leads, for instance,
to an error page. Later, it clicks the FAQ link and then adds an
item to the cart. Pressing the button again now activates new
server-side code related to the purchase, as the cart contains an
item, whereas clicking the FAQ link again does not trigger new
code. However, the curiosity-driven reward assigns the same
value to both interactions, failing to recognize the improved
code coverage from pressing the button again. To address this,
we propose a different reward mechanism that is not sparse

5



and effectively approximates the functionalities of the web
application discovered through each action.

Since code coverage cannot be directly measured without
access to the server-side code of a web application, we use link
coverage to approximate it. Link coverage is determined by
the number of different links gathered during the exploration
of the web application and it is positively correlated with code
coverage [13]. Hence, we use improvements in link coverage
as an easy-to-estimate proxy for changes in code coverage. Of
course, an improvement in the number of newly discovered
links is more meaningful when compared to the history of
previous discoveries. For example, we would penalize a small
increment in link coverage if it follows a significant increase
over a short period. Conversely, we would not penalize a
small increment if the link coverage has stagnated over many
steps, because new links (and corresponding server-side code)
become increasingly difficult to discover as the exploration
proceeds. To take the historical information into account and
the variations in link discovery over time, we define the reward
to be a standardized increment in link coverage relative to
previous increments. Formally, given rt the increment in the
link coverage at time step t, and r̄t and σt the mean and
standard deviation of all the observed increments up to t, the
reward returned by the environment is r̂t = (rt − r̄t)/σt.

D. Policy Update

Finally, we discuss the training of the policy that guides
the crawler, which is determined by the specific RL problem
formulation. We opt for the adversarial formulation of MAB,
because it does not rely on statistical assumptions about the
reward generation process. Specifically, the reward distribution
for each action may not remain fixed even within the same
application during exploration; instead, it may change. This is
well-suited to web crawling, where modern web applications
are often modular, comprising components that act as smaller
web applications that benefit from distinct navigation strate-
gies. For example, in platforms like WordPress, the profile
page is distinct from the blog pages. This modularity is also
enabled by specific features of web development frameworks
such as Flask, that offer the blueprint abstraction [22] to
structure modular web applications.

Having clarified the specific RL problem, we can define how
to update the policy. Specifically, we choose to implement
the policy update as specified by the Exp3.1 algorithm (see
Section II-A), a standard solving algorithm for AdvMAB. We
adopt this specific algorithm since it works by periodically
resetting the weights associated with each action, used to com-
pute their probabilities, ensuring the stability of the algorithm
over time and helping the agent to change selected actions
depending on the changes in the reward distributions. Note
that this algorithm is also applied in security-related work that
exploits the AdvMAB formulation for the same reasons [23].

However, the Exp3.1 algorithm requires the reward to be in
[0, 1], while our standardized improvement in link coverage r̂t
ranges in (−∞,∞). We use the logistic function 1/(1+ e−x)
to normalize r̂t in [0, 1], as done in [23].

V. EXPERIMENTAL EVALUATION

A. Methodology

1) Evaluation Framework: Performing a critical compari-
son of the effectiveness of MAK, WebExplor, and QExplore
is challenging, because their implementations may not just
differ in the choice of the RL problem and the associated
solving algorithm, but also in other details that may easily
introduce bias in the experimental evaluation. In principle,
small implementation differences, e.g., support for different
HTML elements, may play a role in crawling effectiveness
more than the specifics of the RL formulation underlying
the crawlers. Our comparison is further complicated by the
lack of a public implementation of WebExplor, which forced
the authors of QExplore to reimplement their own version of
WebExplor to carry out their experimental evaluation [24]. To
ensure a fair and insightful comparison of the three crawlers,
we implemented a unified framework that enables easy imple-
mentation of RL-based crawlers by instantiating the building
blocks of Algorithm 2. We implement the considered crawlers
within our framework by following the original descriptions
in the WebExplor and QExplore papers, using the available
code from the QExplore authors as guidance when needed.
We make all our code available for transparency [25].

2) Assumptions: To uniform crawler implementations, we
enforce the following: (i) We define interactable elements as
visible elements (links, buttons, and forms). Extending the
crawlers to support additional actions is just a matter of
engineering effort. (ii) Actions that lead the navigation to
external domains are marked as invalid, as done in previous
work [7], [8]. (iii) We do not implement the Deterministic
Finite Automaton (DFA) feature of WebExplor since it escapes
the RL formulation and guides the exploration of the web
application beyond the policy capabilities. This assumption
does not overly penalize WebExplor, because the authors show
that WebExplor with and without DFA converges to around
the same code coverage in 30 minutes [7], which is the time
considered in our experiments.

3) Testbed and Evaluation Criteria: We consider eight
PHP-based web applications of different complexity used
in prior work on crawler evaluations [6], [13]: Address-
Book (v8.2.5), Drupal (v8.6.15), HotCRP (v2.102), Matomo
(v4.11.0), OsCommerce2 (v2.3.4.1), PhpBB2 (v2.0.23),
Vanilla (v2.0.17.10) and WordPress (v5.1.0). We exclude the
PHP-based web applications tested in [7] and [8], due to
their relatively small size and lower popularity. Moreover,
we consider other three web applications built with Node.js
and React to diversify the considered frameworks: Actual
(v25.2.1), Docmost (v0.8.4), and Retro-board (v5.5.2). Retro-
board has been used in [7], while Docmost and Actual
have been selected from [26], have more than 10k stars on
Github, and are employed on two distinct application domains
(documentation reporting and finance accounting) not covered
by the other selected applications. We do not consider the other
Node.js applications used in [7] and [8] because they are no
longer maintained and we were unable to start them.
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Finally, we consider code coverage of the crawler as the per-
formance metric. We compute it as the lines of code on server
side that were executed during the interaction of the crawler
with the web application [6], [13]. To retrieve it, we use
Xdebug [27] and coverage-node [28] for PHP-based and
Node.js-based web applications, respectively. Xdebug supports
code coverage analysis at any point during the execution of
the web application, while coverage-node generates code-
coverage results only after the application stops, resulting in a
coarser-grained analysis for Node.js-based web applications.

4) Configurations: Each experiment consists of running the
crawler on a web application for 30 minutes, as done in
previous work [7], [8]. We repeat the experiments for each pair
of crawlers and web applications for 10 times. Finally, we set
the parameters of each baseline as stated in the corresponding
papers and implementation, if available.

B. Experimental Results on Code Coverage

First, we compare the mean code coverage achieved over
time by MAK, WebExplor, and QExplore. We consider only
the PHP-based web applications in this experiment since only
Xdebug can provide the code coverage at any time during
the execution of the web application. Figure 2 presents the
results. MAK consistently outperforms the baselines, partic-
ularly on larger applications like Drupal, achieving a mean
code coverage of 50,445 lines compared to the 45,761 lines
covered by WebExplor (+4,684). On smaller applications like
OsCommerce2, MAK also excels with 5,051 lines covered
on average, surpassing the 4,924 lines covered by WebExplor
(+127). Additionally, MAK generally demonstrates faster con-
vergence than the baselines, reaching the highest coverage on
PhpBB2 in under six minutes, whereas the baselines fail to
achieve the same code coverage in 30 minutes. This pattern
extends to other smaller applications. These results confirm the
superior exploration capabilities of MAK due to its stateless
nature and its more expressive reward.

Comparing the code coverage over time is useful for eval-
uating the relative performance of different crawlers, but does
not provide an objective evaluation of the crawlers with respect
to a ground truth. Unfortunately, calculating the total lines of
server-side code for each application is challenging and error-

TABLE II: Estimated mean code coverage of the crawlers. The
best result for each web application is marked in bold.

Application MAK WebExplor QExplore

AddressBook 99.3% 98.5% 96.4%
Drupal 76.8% 69.6% 68.7%

HotCRP 87.3% 77.2% 71.2%
Matomo 85.1% 82.3% 83.5%

OsCommerce2 80.7% 78.7% 78.1%
PhpBB2 89.4% 83.6% 89.2%
Vanilla 97.7% 89.5% 88.7%

WordPress 50.5% 48.4% 46.8%

Actual 64.6% 64.1% 64.1%
Docmost 64.7% 64.0% 64.0%

Retro-board 51.9% 48.9% 48.9%

prone, as noted in prior work [6]. coverage-node provides
the total number of lines of server-side code for Node.js-based
web applications, while Xdebug does not offer this feature. To
address this, we estimate the total number of lines of server-
side code for PHP-based web applications by taking the union
of the unique lines of code covered by all crawlers, across all
runs, for each application. Using the counted total number of
lines of server-side code as the ground truth, we estimate the
mean code coverage, i.e., the mean percentage of lines covered
by each crawler relative to our ground truth estimate. The
results in Table II show that MAK obtains a higher estimated
mean code coverage on all the PHP- and Node.js-based web
applications. For instance, on HotCRP and Retro-board, MAK
covers respectively 87.3% and 51.9% of the ground truth on
average, compared to WebExplor 77.2% and 48.9% (+10.1%
and +3.0%), despite the latter leveraging state information.
MAK also covers over 80% of the observed lines of code on
more than half of the considered web applications on average.
These results confirm that the approach of MAK enhances
exploration and outperforms state-based methods on all the
considered PHP- and Node.js-based web applications.

C. Ablation Study

We now assess the importance of the learning component
of MAK by performing an ablation study. In particular, we
compare MAK against three non-learning crawlers implement-
ing the navigation strategies BFS, DFS, and Random. Note
that these strategies can be simulated with MAK by always
executing one of its three actions Head, Tail, and Random (see
Section IV-B). We define the regret of the crawler c on the web
application w as the difference between the average number of
lines of code covered by the best crawler minus the average
number of lines of code covered by c, divided by the total
number of lines of code of w. If a crawler exhibits the best
estimated mean code coverage on a web application, then the
regret for that web application is zero. The cumulative regret
of a crawler is just the sum of its regrets over the different
applications. A lower cumulative regret indicates a crawler
that consistently performs closer to the optimal strategy over
the web applications. The results confirm the effectiveness
of the policy learned by MAK over non-learning crawlers.
In particular, MAK achieves the lowest cumulative regret,
14.9. BFS follows with 36.0, while DFS and Random perform
significantly worse, with cumulative regrets of 126.7 and 70.2.
These results highlight the importance of the learning compo-
nent of MAK, as dynamically alternating between navigation
strategies allows it to outperform static crawlers that can not
adapt to different (parts of) web applications.

D. Performance Evaluation

Since all the crawlers were executed for the same amount
of time, MAK already proved more efficient than competitors,
being able to achieve better code coverage. Still, to better
understand the improved efficiency, we compute the mean
number of interacted elements during execution by MAK,
WebExplor and QExplore over the web applications, which
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Fig. 2: Mean and standard deviation of the code coverage reached over 30 minutes by QExplore, WebExplor and MAK.

corresponds to the mean number of atomic actions performed
by each crawler. The results show that MAK performs a
number of interactions comparable to WebExplor and QEx-
plore. Specifically, MAK interacts with an average of 883
elements per run, compared to 854 for WebExplor and 827
for QExplore. These findings indicate that the increase in code
coverage achieved by MAK is not merely due to more frequent
interactions but rather to a more effective selection of elements
to interact with during crawling.

VI. RELATED WORK

Crawlers are widely employed for tasks like web application
testing [2], [29], vulnerability detection [6], [30], [31] and
web measurements [32], [33], [34]. Therefore, previous work
has proposed several web crawlers with different navigation
strategies and state abstractions [3], [4], [5], [6], [30], [35].
However, a recent survey [13] has shown that no single naviga-
tion strategy or page similarity algorithm performs best across
diverse applications. Our work starts from this observation
to identify and criticize the limitations of existing RL-based
crawlers, providing concrete examples and a possible solution.

RL has gained attention in web crawling [36], [37]. We-
bExplor [7] and QExplore [8] leverage Q-Learning to learn
how to explore web applications. Our work builds on them
by proposing a simpler yet effective stateless crawler that ad-
dresses their limitations. Other RL-based solutions to explore
web applications include the usage of multi-agent reinforce-
ment learning [38] or generic graphical user interface (GUI)
testing [39], [40], [41]. In this work, we restrict the scope to
single-agent RL-based crawlers specifically tailored for web
applications. Our proposal has the potential to improve multi-
agent RL-based crawlers as well, because each agent of the
ensemble can benefit from our stateless approach.

The work most closely related to ours is [16], that compares
Q-Learning-based tools for application testing within a unified
framework. However, there are important differences with
our work: (i) we not only criticize existing Q-Learning-based
solutions, but also propose a novel RL-based crawler to ad-
dress their limitations; (ii) our experimental evaluation is more
realistic, covering eleven production-ready web applications,
compared to the two small web applications and a undisclosed
commercial portal used in [16]; (iii) the comparison framework
in [16] is not publicly available, while we release ours to fa-
cilitate integration and evaluation of other RL-based crawlers.

VII. CONCLUSION

In this paper, we reviewed two state-of-the-art RL-based
crawlers, WebExplor and QExplore, showing the limitations
of their design choices with concrete examples. We then
proposed MAK, a crawler based on the intuition that less
is more: simplifying the application of RL to web crawling
can enhance its exploration capabilities. Our crawler adopts a
state-agnostic approach to learn the optimal navigation policy,
formulating the crawling problem as an AdvMAB problem
and employing an informative reward based on link coverage.
Our experimental results show that MAK achieves broader and
faster exploration than WebExplor and QExplore.

Future work will focus on assessing other RL-based solu-
tions, such as generic GUI testing approaches, and integrating
MAK within web scanners [6] to enhance web application
testing and security assessments.
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dynamic analysis to crawl and test modern web applications,” in
Research in Attacks, Intrusions, and Defenses: 18th International
Symposium, RAID 2015, Kyoto, Japan,November 2-4, 2015.
Proceedings, H. Bos, F. Monrose, and G. Blanc, Eds. Cham:
Springer International Publishing, 2015, pp. 295–316. [Online].
Available: https://trouge.net/papers/jAEk raid2015.pdf

[6] B. Eriksson, G. Pellegrino, and A. Sabelfeld, “Black widow:
Blackbox data-driven web scanning,” in 42nd IEEE Symposium on
Security and Privacy, SP 2021, San Francisco, CA, USA, 24-
27 May 2021. IEEE, 2021, pp. 1125–1142. [Online]. Available:
https://doi.org/10.1109/SP40001.2021.00022

[7] Y. Zheng, Y. Liu, X. Xie, Y. Liu, L. Ma, J. Hao, and Y. Liu, “Automatic
web testing using curiosity-driven reinforcement learning,” in 43rd
IEEE/ACM International Conference on Software Engineering, ICSE
2021, Madrid, Spain, 22-30 May 2021. IEEE, 2021, pp. 423–435.
[Online]. Available: https://doi.org/10.1109/ICSE43902.2021.00048

[8] S. Sherin, A. Muqeet, M. U. Khan, and M. Z. Iqbal, “Qexplore:
An exploration strategy for dynamic web applications using guided
search,” J. Syst. Softw., vol. 195, p. 111512, 2023. [Online]. Available:
https://doi.org/10.1016/j.jss.2022.111512

[9] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[10] N. Savinov, A. Raichuk, D. Vincent, R. Marinier, M. Pollefeys, T. P.
Lillicrap, and S. Gelly, “Episodic curiosity through reachability,” in
7th International Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.
[Online]. Available: https://openreview.net/forum?id=SkeK3s0qKQ

[11] S. Singh, A. G. Barto, and N. Chentanez, “Intrinsically motivated
reinforcement learning,” in Advances in Neural Information Processing
Systems 17 [Neural Information Processing Systems, NIPS 2004,
December 13-18, 2004, Vancouver, British Columbia, Canada], 2004,
pp. 1281–1288. [Online]. Available: https://proceedings.neurips.cc/
paper/2004/hash/4be5a36cbaca8ab9d2066debfe4e65c1-Abstract.html

[12] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, “Curiosity-
driven exploration by self-supervised prediction,” in 2017 IEEE
Conference on Computer Vision and Pattern Recognition Workshops,
CVPR Workshops 2017, Honolulu, HI, USA, July 21-26, 2017.
IEEE Computer Society, 2017, pp. 488–489. [Online]. Available:
https://doi.org/10.1109/CVPRW.2017.70

[13] A. Stafeev and G. Pellegrino, “Sok: State of the krawlers -
evaluating the effectiveness of crawling algorithms for web security
measurements,” in 33rd USENIX Security Symposium, USENIX Security
2024, Philadelphia, PA, USA, August 14-16, 2024, D. Balzarotti and
W. Xu, Eds. USENIX Association, 2024. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity24/presentation/stafeev

[14] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire,
“Gambling in a rigged casino: The adversarial multi-armed bandit
problem,” Electron. Colloquium Comput. Complex., vol. TR00-
068, 2000. [Online]. Available: https://eccc.weizmann.ac.il/eccc-reports/
2000/TR00-068/index.html

[15] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire, “The
nonstochastic multiarmed bandit problem,” SIAM Journal on Computing,

vol. 32, no. 1, pp. 48–77, 2002. [Online]. Available: https:
//doi.org/10.1137/S0097539701398375

[16] Y. Fan, S. Wang, S. Wang, Y. Liu, G. Wen, and Q. Rong,
“A comprehensive evaluation of q-learning based automatic web
GUI testing,” in 10th International Conference on Dependable
Systems and Their Applications, DSA 2023, Tokyo, Japan, August
10-11, 2023. IEEE, 2023, pp. 12–23. [Online]. Available: https:
//doi.org/10.1109/DSA59317.2023.00013

[17] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization
with gumbel-softmax,” in 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings. OpenReview.net, 2017. [Online].
Available: https://openreview.net/forum?id=rkE3y85ee

[18] “HotCRP,” https://hotcrp.com/ [Accessed: 2/12/2024].
[19] “Matomo,” https://matomo.org/ [Accessed: 2/12/2024].
[20] “Drupal,” https://www.drupal.org/ [Accessed: 2/12/2024].
[21] “WordPress,” https://www.wordpress.com [Accessed: 2/12/2024].
[22] “Blueprint,” https://flask.palletsprojects.com/en/3.0.x/blueprints/ [Ac-

cessed: 2/12/2024].
[23] D. Wang, Z. Zhang, H. Zhang, Z. Qian, S. V. Krishnamurthy,

and N. B. Abu-Ghazaleh, “Syzvegas: Beating kernel fuzzing
odds with reinforcement learning,” in 30th USENIX Security
Symposium, USENIX Security 2021, August 11-13, 2021, M. D.
Bailey and R. Greenstadt, Eds. USENIX Association, 2021, pp.
2741–2758. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity21/presentation/wang-daimeng

[24] “Qexplore implementation,” https://github.com/salmansherin/QExplore
[Accessed: 2/12/2024].

[25] “RL-based crawlers evaluation framework,” https://doi.org/10.5281/
zenodo.14276533 [Accessed: 23/04/2025].

[26] “Awesome-selfhosted,” accessed: 27-Feb-2025. [Online]. Available:
https://awesome-selfhosted.net/index.html

[27] “Xdebug,” https://xdebug.org/, accessed: 2024-11-22.
[28] “coverage-node,” accessed: 27-Feb-2025. [Online]. Available: https:

//github.com/jaydenseric/coverage-node
[29] B. Yu, L. Ma, and C. Zhang, “Incremental web application testing

using page object,” in Third IEEE Workshop on Hot Topics in
Web Systems and Technologies, HotWeb 2015, Washington, DC, USA,
November 12-13, 2015. IEEE Computer Society, 2015, pp. 1–6.
[Online]. Available: https://doi.org/10.1109/HotWeb.2015.14

[30] S. Khodayari and G. Pellegrino, “JAW: studying client-side CSRF with
hybrid property graphs and declarative traversals,” in 30th USENIX
Security Symposium, USENIX Security 2021, August 11-13, 2021,
M. D. Bailey and R. Greenstadt, Eds. USENIX Association, 2021,
pp. 2525–2542. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity21/presentation/khodayari

[31] E. Trickel, F. Pagani, C. Zhu, L. Dresel, G. Vigna, C. Kruegel,
R. Wang, T. Bao, Y. Shoshitaishvili, and A. Doupé, “Toss a fault to
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