In the DOM We Trust: Exploring the Hidden Dangers of Reading
from the DOM on the Web

Jan Drescher”
Technische Universitat Braunschweig
Braunschweig, Germany
jan.drescher@tu-braunschweig.de

David Klein
Technische Universitiat Braunschweig
Braunschweig, Germany
david.klein@tu-braunschweig.de

Sepehr Mirzaei*
CISPA Helmbholtz Center for
Information Security
Saarbriicken, Germany
sepehrmirzaei98@gmail.com

Thomas Barber
SAP SE
Karlsruhe, Germany
thomas.barber@sap.com

Soheil Khodayari
CISPA Helmbholtz Center for
Information Security
Saarbriicken, Germany
shl.khodayari@gmail.com

Martin Johns
Technische Universitiat Braunschweig
Braunschweig, Germany
m.johns@tu-braunschweig.de

Giancarlo Pellegrino
CISPA Helmbholtz Center for
Information Security
Saarbriicken, Germany
pellegrino@cispa.de

Abstract

The DOM tree is a central part of modern web development, en-
abling JavaScript to interact with page content and structure. Only
a few prior studies have studied its trustworthiness, despite its wide-
spread use in guiding program logic and security decisions. Most
notably, script gadgets have shown how this trust can be exploited
by triggering the execution of benign JavaScript fragments with
seemingly harmless markup injections. In this paper, we show that
script gadgets are only the tip of the iceberg. Seemingly-benign
markup injections can trigger the execution of fragments—that we
call DOM gadgets—that, unlike script gadgets, do not necessarily
result in a cross-site scripting vulnerability. Instead, they can result
in a broader set of attacks, such as browser request hijacking attacks,
cross-site request forgery attacks, and user interface manipulations.

In this paper, we introduce an automated approach that combines
static and dynamic analysis to detect DOM gadgets, tracing flows
from the DOM to security-sensitive sinks, and assessing the pres-
ence of validation or sanitization checks. We conduct a large-scale
web crawl across the top 15k domains and identify 2.6 million DOM-
to-sink data flows that could lead to DOM gadget exploitation. We
complement this by automatically detecting markup injection vul-
nerabilities, finding 657 DOM gadgets on 37 sites with the markup
injection vulnerability required to exploit the DOM gadget. We
further analyze these flows to assess the presence and effectiveness
of security checks, revealing that 10% of DOM gadget flows receive
no validation or sanitization checks. Our results indicate that DOM-
based input trust is both widespread and underprotected. Our work

“Both authors contributed equally to this research.

This work is licensed under a Creative Commons Attribution 4.0 International License.
CCS ’25, Taipei, Taiwan

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1525-9/2025/10

https://doi.org/10.1145/3719027.3765117

highlights the scale and diversity of DOM gadget vulnerabilities in
the wild, motivating a rethink of the DOM’s role in web application
trust boundaries and offering tools to aid in their identification and
mitigation.

CCS Concepts

« Security and privacy — Web application security.

Keywords
DOM,; Script Gadgets; Prevalence; DOM Gadgets

ACM Reference Format:

Jan Drescher, Sepehr Mirzaei, Soheil Khodayari, David Klein, Thomas Bar-
ber, Martin Johns, and Giancarlo Pellegrino. 2025. In the DOM We Trust:
Exploring the Hidden Dangers of Reading from the DOM on the Web. In
Proceedings of the 2025 ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS ’25), October 13—17, 2025, Taipei, Taiwan. ACM, New
York, NY, USA, 15 pages. https://doi.org/10.1145/3719027.3765117

1 Introduction

The Document Object Model (DOM) [11] is a programming in-
terface central in web development that is primarily used to dy-
namically modify the content and appearance of webpages. More
recently, the DOM has also been used to store data, including sen-
sitive data items such as site configurations — often embedded in
element properties like data-x* attributes. Developers leverage a va-
riety of DOM query functions, such as querySelector, to retrieve
these elements and use their attributes to perform security-relevant
operations, such as generating URLs to fetch external resources.
Unfortunately, attackers can exploit such DOM read operations
by injecting seemingly benign HTML elements and hijacking the
control flow of benign code snippets to achieve unauthorized cross-
site requests or, worse, arbitrary JavaScript execution. To date, the
security implications of reading data from the DOM tree remain
largely unexplored.

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3719027.3765117
https://doi.org/10.1145/3719027.3765117

CCS 25, October 13-17, 2025, Taipei, Taiwan

The security risks when interacting with the DOM tree have been
studied before, with most prior attention dedicated to write oper-
ations. The most notorious examples of attacks are DOM-based
(or client-side) Cross-Site Scripting (XSS) [27, 50, 55, 68], where
attacker-controlled input strings, typically originating from the
page URL, are inserted in the DOM tree, enabling attackers to
achieve arbitrary JavaScript execution. Only recently has the fo-
cus shifted towards more subtle code execution attacks originating
from unexpected interactions between the DOM tree and devel-
opers’ code. In these attacks, attackers no longer inject malicious
JavaScript code; instead, they use seemingly benign HTML ele-
ments that can hijack JavaScript control flow when injected into
the DOM tree. One such attack is DOM Clobbering [44], where the
attacker leverages a naming collision between JavaScript variables
and named HTML markups, resulting in the page’s scripts implicitly
accessing attacker-controlled data in the DOM. Another example of
such attacks is script gadgets [49], which are fragments of benign
JavaScript that explicitly access and consume DOM elements and
can execute JavaScript when attackers control such elements. De-
spite all these works, these threats have largely focused on attacks
that ultimately result in the execution of malicious JavaScript code,
leaving open the question of whether—and to what extent—other
attacks beyond code execution are possible.

In this paper, we look at the broader category of vulnerabilities
and attacks that originate when fragments of benign JavaScript
code explicitly consume DOM elements. We call this category of
vulnerabilities DOM gadgets. As a first step, we undertake a sys-
tematization of possible DOM gadgets beyond the script gadgets,
along with the attacks they enable. Then, we perform one of the
first large-scale measurements of DOM gadgets in the wild, aiming
to determine the extent to which developers trust the DOM via a
multi-step hybrid data-flow analysis. First, we identify the DOM
gadgets searching for code fragments that (i) read from the DOM
tree via DOM queries and (ii) perform sensitive operations. We
do so by analyzing the data flows from the DOM tree to sensitive
operations. Then, we identify the markup injection automatically
by analyzing the data flows from untrusted sources, e.g., the URL,
to the DOM tree, which is contrary to prior works (i.e., [44, 49])
that assumed that an injection point exists for the gadgets. Finally,
we identify the pages having both DOM gadgets and the required
markup injection.

We applied our methodology to the top 15K Tranco websites,
collecting a large dataset of 522K webpages and 10.3B lines of
JavaScript code. Our results show that DOM gadgets are ubiquitous
in the wild, with an overall 357K verified instances affecting ~15%
of the analyzed domains, of which 77% correspond to new gadget
types beyond script gadgets. By automatically identifying injec-
tion points for the DOM gadgets, we identified 657 DOM gadgets
with the required markup injection across 37 sites. These gadgets
can be used for malicious purposes beyond injecting JavaScript,
including hijacking outgoing requests, web sockets, and top-level
navigation URLs—among the most frequent ones. We analyzed 60K
gadgets found via static analysis, uncovering that 10% of the gadgets
perform no input sanitization operation. We present four attack
techniques to reorder DOM elements and exploit DOM gadgets,
showing that these new techniques are a requirement for exploiting
at least 34% of the discovered gadgets.

Jan Drescher et al.

In summary, this paper makes the following contributions:

e We propose the first characterization and analysis of DOM
gadgets, the broader category of vulnerabilities and attacks
that originate when fragments of benign JavaScript code
consume DOM elements.

We propose one of the first analysis techniques targeting
gadget-based vulnerabilities, where we automated both the
identification of the gadgets and verified their exploitability
by identifying injection opportunities for the attacker.

We performed a large-scale analysis of the top 15K popular
Tranco sites, identifying 357K verified DOM gadgets affecting
~15% of the analyzed sites, from which we found 657 DOM
gadgets spanning 37 sites with an injection point.

We present four novel attack techniques to exploit DOM
gadgets, which enable reordering of DOM elements, and
show that these new techniques are necessary for at least
34% of the discovered gadgets.

Open Science Statement—Please see §8.4

2 Background

Before presenting our study, we describe the background informa-
tion required to understand this work.

2.1 Script Gadget Vulnerability

Script gadgets [49] are code fragments within client-side JavaScript
programs that unexpectedly react to code-less nodes injected into
the DOM, reading properties of injected nodes and using them
in code execution sink instructions, such as eval [36]. In a sense,
script gadgets transform the initially benign markup into executable
code, presenting a new and code-less breed of client-side Cross-Site
Scripting (XSS) vulnerabilities [31, 45, 50, 68]. XSS attacks are a
critical threat to web applications, allowing adversaries to exfil-
trate sensitive data, manipulate application behavior, or perform
unauthorized actions on behalf of user victims-to name only a few
examples.

Traditional XSS vulnerabilities arise when applications fail to
properly validate untrusted input containing code, typically solved
by controlling or disallowing code execution, such as input sanitiza-
tion [34, 45] and Content Security Policy (CSP) [67, 72]. In code-less
XSS, the input does not contain malicious JavaScript code directly
but can hijack the execution of existing client-side JavaScript code
through a script gadget. Unlike the traditional XSS, existing XSS
countermeasures are insufficient to protect web applications from
these new XSS variants [49]. Modern input sanitizers [29, 34, 45],
like DOMPurify [34] and the new sanitizer API [29] can only san-
itize inputs containing JavaScript code, which is not the case for
script gadgets. On the other hand, the CSP cannot prevent the ex-
ecution of already-present code that reacts to code-less markups.
These observations suggest that existing countermeasures may be
incomplete. The research community has only recently started ex-
ploring the impact of script gadgets on the security posture of web
applications [49, 56].

In the DOM We Trust: Exploring the Hidden Dangers of Reading from the DOM on the Web

1 <script>

2 var cartltems =

3 document.querySelectorAll('.cart-item');
4 for (const elem of cartlItems) {

5 var url = elem.getAttribute('data-url');
6 // check item inventory and price

7 fetch(url, {

8 method: 'POST',

9 headers: { 'XSRF-Token': "xyz" }),
10 body: JSON.stringify({ ... }),

11 }).then(resp => { /x [...]1 /*x });

12}

13 </script>

14 <div class="cart-item"

15 data-url="/api/vl/checkInventory?id=item-12345">
16 </div>

Listing 1: Example of a DOM gadget vulnerability in a
shopping cart application targeting the "Add to Cart"
functionality.

2.2 DOM Gadget Vulnerability

Script gadgets are just one instance of a broader, largely unex-
plored issue involving vulnerable gadgets present within client-
side JavaScript programs. In this case, a property of an injected
node flows to a code execution instruction, i.e., XSS. While signifi-
cant attention has been given to code execution risks, the threats
stemming from other sensitive APIs and operations—such as asyn-
chronous requests, web sockets, event sources, post messages, and
top-level navigations—remain unexplored in the context of DOM
gadget exploitation. For example, attackers can abuse these gad-
gets to obtain client-side request forgery [1, 42], cross-site socket
hijacking [39, 60], and information leakage [32, 39, 69].

2.2.1 Vulnerability Description. A DOM gadget vulnerability oc-
curs when a JavaScript program selects a node from the DOM tree
using a specific DOM selector, retrieves the value of a property from
the selected node, and then uses this value in a security-sensitive
operation without proper validation, enabling attackers to execute
arbitrary code or perform unintended operations. The fundamen-
tal issue lies in developers mistakenly assuming that the content
within the DOM is inherently trustworthy. This leads them to use it
directly in sensitive operations without proper validation, creating
opportunities for attackers to manipulate the DOM and exploit
these gadgets.

Listing 1 shows an example of a DOM gadget vulnerability in a
shopping cart application. The client-side code dynamically updates
the cart whenever an item is added. When a new item is added to
the DOM (e.g., after selecting a product), the application triggers
a request to check the inventory. First, it selects all nodes with
the cart-item class (lines 2-3). When such a node is detected, it
retrieves the data-url attribute (line 5) and sends a POST request
to the specified URL (lines 7-11) to check the inventory and price of
the item, identified by the item ID in the URL. The request includes
a token (line 9) to authenticate the request against CSRF [26, 43, 51].
The vulnerability stems from the implicit trust developers place in
DOM nodes (cart-item elements) and using them to generate an
authenticated request.

2.2.2 Attack Overview. Attackers can exploit DOM gadgets by in-
jecting one or more seemingly harmless nodes into the DOM that

CCS 25, October 13-17, 2025, Taipei, Taiwan

attack.com

o 1

site.com

o &
—_— ww

HTML Injection

T
)

Victim

V5
n\"

HTML
<div class=" "
data-url="https://attack.com/leak-info"></div>

(a) Information Leakage.

site.com attack.com

— | 0
&K (3)
HTML Injection
= ™ | Response

Victim

1 @

NY) v

Y

HTML
<div class=" "
data-url="https://attack.com/forge-resp"></div>

(b) Response Forgery.

Figure 1: Example attack exploiting a DOM gadget vulnera-
bility.

match the selector query used by the JavaScript code. These ma-
licious nodes can manipulate the program’s behavior by being
selected in place of legitimate nodes and, consequently, be used
in sensitive instructions. Figure 1 shows example attack scenarios
exploiting the vulnerability in Listing 1. If attackers inject mali-
cious nodes with crafted data-url attributes, they can control the
destination of the asynchronous request (line 7). This allows them
to hijack the request and redirect it to their own servers. This has
various security implications.

Firstly, attackers can exfiltrate sensitive information (Figure 1a),
such as the XSRF token embedded in the request header or person-
ally identifiable information (PII) included in the request body, like
auser’s address used for inventory checks and delivery. With access
to the XSRF token, attackers can execute CSRF attacks, forging re-
quests to arbitrary state-changing application endpoints. Secondly,
by manipulating the response to these requests, attackers can inject
arbitrary data into the application (Figure 1b). For example, they
could falsify the response to set a product price to zero, effectively
allowing them to acquire goods or services without payment.

2.3 Threat Model

In this paper, we consider a web attacker [25, 26] who abuses inputs
such as URL parameters, window name, document referrer, and
postMessages, to inject code-less HTML markups to the DOM tree,
and exploit DOM gadget vulnerabilities present within the page to
trigger sensitive instructions, which is in line with prior work in
the area of client-side vulnerabilities [42, 43, 49, 50, 69]. To achieve
this, the attacker exploits a Markup injection vulnerability in the
web application that reflects attacker-controlled inputs (e.g., from

CCS 25, October 13-17, 2025, Taipei, Taiwan

URL parameters) into the document. If mitigations like CSP or
input sanitization are in effect, the attacker cannot exploit this
vulnerability to gain code execution immediately. Instead, they
inject markups that are selected and read by the DOM gadget. The
attacker in Figure 1 combines the gadget and markup injection
vulnerabilities, using the markup injection vulnerability to inject
the displayed markup that subsequently triggers the DOM gadget.

In contrast to the strong assumptions made in prior research on
script gadgets (i.e., [50]), we do not assume that an adversary can
inject code-less HTML nodes into the DOM on all webpages con-
taining such gadgets. Instead, we propose an end-to-end approach
to identify specific pages where both markup injection vulnera-
bilities and DOM gadgets coexist. This approach is more realistic,
avoiding broad assumptions about attacker capabilities.

In addition, prior work [50] assumes that attackers must inject
their malicious node before the benign one in the DOM tree, as
query selectors typically select the first matching element. How-
ever, this paper introduces a novel mechanism that eliminates this
requirement, expanding the scope of potential exploitation.

3 Problem Statement

Modern web applications increasingly rely on dynamic interactions
between client-side code and the DOM, creating opportunities for
attackers to exploit vulnerable patterns. While prior work has high-
lighted the risk of script gadgets enabling code execution [49, 56],
this represents only a subset of potential threats posed by DOM
gadgets. Browsers support a wide range of sensitive instructions,
including asynchronous requests, web sockets, and post messages—
to name only a few examples. If attackers can manipulate these
instructions, the consequences could range from data exfiltration
to unauthorized actions across application states. This raises key
research questions about the systematization, detection, and ex-
ploitation of these vulnerabilities:

RQ1: Gadget Systematization. Beyond script gadgets, what other
types of DOM gadgets exist, and how can attackers exploit them?

RQ2: Gadget Detection and Prevalence. How can we identify DOM
gadgets at scale using static and dynamic analysis? How prevalent
are these gadgets in real-world applications, and to what extent do
developers trust the DOM?

RQ3: Exploitable Gadgets and Impact. How many pages with
DOM gadgets are truly exploitable, allowing attackers to inject
markup into the DOM to trigger them?

4 Systematization of DOM Gadgets

We now address RQ1, outlined in §3, with the goal of systematizing
DOM gadgets.

4.1 Reading from DOM

Client-side JavaScript can access data from the DOM through
a variety of APIs, including document.querySelector and doc-
ument.querySelectorAll, as specified by the W3C [23] and
WHATWG [24] specifications. These APIs allow for node selection
in the DOM tree using patterns that describe the desired attributes
of target nodes, such as matching id and class names, commonly
known as DOM selectors [21]. Browsers also offer simpler APIs for

Jan Drescher et al.

Table 1: DOM Selectors.

Category ‘ Selector ‘ Matches

Basic E element of tag E
Selectors E#foo E with id foo
E.foo E with class foo
E[foo] E with an attribute foo
Attribute E[foo="bar"] E with attribute foo and value bar
Selectors E[foo~="bar"] E whose foo attribute value contains bar
E[foo"="bar"] E whose foo attribute starts with bar
Function E:first-child E element that is the first child of its parent
Selectors E:last-child E element that is the last child of its parent
E:nth-child(n) | The n-th child E element of its parent
E:not(s1,s2) E that does not match selectors s1 or s2
E:is(s1,s2) E that matches s1 or s2
E:where(s1,s2) | E that matches s1 or s2 with no specificity
E:has(s1,s2) E containing an element matching s1 or s2
Relation E>E E’ that is a child of an E
Selectors E+E E’ immediately following an E

Table 2: APIs for reading from the Document interface via
DOM selectors. The last column shows whether our Fox-
hound implementation supports it.

JavaScript API Ref. Foxhound
document . getElementById(id) [22] §4.2.4 v
document. getElementsByName (name) [22] § 4.5 v
document.getElementsByClassName(className) [22] § 4.5 v
document . getElementsByTagName (tagName) [22] § 4.5 v
document . getElementsByTagNameNS (tagName) [22] § 4.5 v
document . querySelector(selector) [22] § 4.2.6 v
document.querySelectorAll (selector) [22] § 4.2.6 v
document.elementFromPoint(x, y) [22] § 4.5 v
document.elementsFromPoint(x, y) [22] § 4.5 v

accessing DOM content, such as document.getElementById and
document. getElementsByClassName, which are typically stream-
lined wrappers around DOM selectors. Table 1 summarizes the
syntax of DOM selectors, and Table 2 lists the APIs that can use
those selectors to read content from DOM.

Another common method to read content from the DOM is
through event handlers, specifically by accessing objects on which
events are fired via the EventTarget interface [15]. This approach
is analogous to the example presented in Listing 1. Finally, there
exist other methods for reading content from the DOM, such as
XPath expressions [10] and node navigation through parent/child
relationships. However, these approaches are too brittle and prone
to break with minor changes in the Ul, making it significantly
harder for attackers to exploit them. In this work, we focus on
query selector-based DOM read APIs.

4.2 DOM Gadgets and Vulnerabilities

DOM gadgets are vulnerable data flow patterns in client-side
JavaScript, where attacker-controlled inputs from DOM nodes ul-
timately reach various sensitive APIs (sinks), resulting in a wide
range of security issues. Script gadgets are one instance of DOM
gadgets, where the affected API is a JavaScript code execution
instruction, leading to XSS. While script execution is the most im-
mediate concern, the definition of script gadgets overlooks a wide

In the DOM We Trust: Exploring the Hidden Dangers of Reading from the DOM on the Web

CCS 25, October 13-17, 2025, Taipei, Taiwan

Table 3: Overview of DOM gadgets and attacks. Legend: © = new DOM gadget variants.

3 Gadget

‘ XSS Content Manip. Phishing Unauth Action Info Leak Session Hijack. Open Redirect Drive-by Downl. Rogue Plugin ‘ Related Ref.

Code Execution [
Markup Injection | @
Async. Request O
WebSocket O
Navigation [
Object Loading [
Form/Link Manip. | @

00000

00000 eO
[JoJ JoJoIX J@)
ool X X JoIo
0000000

@) @) @) @) [49, 50]

O O O O [34, 45, 49]
O O O O [1,39, 42]
o O O O [9, 54, 60]
[} o O O [40]

@) @) [] [] [47, 66, 71]
@) [J O [J [4,35]

array of other vulnerabilities. Characterized by different sinks, ex-
ploit techniques and impact, these overlooked gadgets from the
majority of all DOM gadgets.

DOM gadgets can enable attackers to manipulate DOM-based
sinks for purposes such as request hijacking, credential theft,
or unauthorized state changes. We reviewed W3C [23] and
WHATWG [24] specifications, as well as academic and non-
academic literature (see, i.e., [1, 4, 9, 34, 35, 39, 40, 42, 45, 47, 49, 50,
54, 60, 66, 71]), looking for Web APIs and instructions that can be
manipulated by DOM gadgets. We categorized the potential threats
of DOM gadgets based on the sensitive instructions they exploit.
Table 3 summarizes our findings. Below, we describe each gadget
type and its threats.

Code Execution Gadgets. These gadgets enable attackers to ex-
ecute arbitrary code by leveraging instructions that evaluate or
execute strings as code, such as eval, new Function(), and set-
Timeout [49, 50]. They are commonly used in XSS attacks to in-
ject and run malicious JavaScript, compromising user data and
application integrity. Code Execution gadgets are a form of script
gadgets [49].

Markup Injection Gadgets. These gadgets manipulate the struc-
ture or content of the DOM, potentially injecting malicious con-
tent or altering page behavior [34, 49]. These gadgets exploit dy-
namic markup insertion instructions such as innerHTML, docu-
ment.write, and iframe.srcdoc, allow attackers to inject ma-
licious HTML. This can lead to client-side XSS, unauthorized
UI changes, and phishing attacks through content manipulation.
Markup injection gadgets are another form of script gadgets [49].

Asynchronous Request Gadgets. Asynchronous request gad-
gets exploit APIs like fetch, XMLHttpRequest, and naviga-
tor. sendBeacon, which facilitate communication with web ser-
vices such as REST APIs without reloading the page. If attackers
gain control over the URL, body, or headers of these requests, they
can force victims to perform unauthorized actions, resulting in
client-side CSRF attacks [42].

Beyond unauthorized actions, manipulating asynchronous re-
quest URLs can also cause sensitive information leakage. By redi-
recting requests to attacker-controlled servers, attackers can cap-
ture sensitive data included in headers or request bodies, such as
personally identifiable information (PIIs), or CSRF tokens [39].

WebSocket Gadgets. WebSocket gadgets exploit the WebSocket
API, which establishes full-duplex, event-driven communication
between browsers and servers, which is exempt from the Same-
Origin Policy, typically initiated via an HTTP GET request. If an

attacker gains control over the WebSocket connection, they can
execute Cross-Site WebSocket Hijacking (CSWSH) [9, 54, 60]. In
such attacks, an attacker embeds a WebSocket connection to a target
website within a malicious page. When a victim visits the page, their
browser performs authenticated actions on the attacker’s behalf.
Unlike traditional CSRF, CSWSH enables both read and write access
to the victim’s session. Moreover, if an attacker can manipulate the
URL used for the initial WebSocket handshake, they can redirect the
connection to a malicious server, enabling information leakage and
unauthorized data exchange. Additionally, control over the data
sent through the WebSocket allows message hijacking, potentially
triggering CSRF-like behaviors. This highlights how WebSocket
gadgets pose risks beyond other network requests, amplifying both
data theft and abuse scenarios.

Top-level Navigation Gadgets. Top-level navigation gadgets ex-
ploit APIs such as location and window.open to manipulate
browser navigation and trigger HTTP requests. The location API
can alter the current URL and initiate a new HTTP GET request. If
an attacker gains control over the entire URL, they could exploit the
javascript: protocol for client-side XSS attacks [40] or redirect
the browser to a malicious site [41], facilitating phishing or session
hijacking. Even partial control of the URL, such as modifying query
parameters, can lead to CSRF when state-changing GET requests
are supported or when POST requests are improperly accepted
as GET. Similarly, the window. open API initiates top-level HTTP
requests in new or existing browser contexts, posing risks like open
redirects, CSRF, and client-side XSS.

Object Loading Gadgets. These gadgets exploit elements responsi-
ble for loading external resources such as media, scripts, or objects.
This may result in drive-by downloads, rogue plugin injections,
inclusion of harmful media, and XSS if attackers can manipulate
the URL of dynamically loaded scripts, e.g., via the script.src
APL

Form/Link Manipulation Gadgets. These gadgets allow attackers
to modify form destinations and links [4, 35] through APIs like
form.action and a.href. This can exfiltrate user-entered data,
redirect users to malicious pages, and create deceptive phishing
links for social engineering. Furthermore, attackers could exploit
the javascript: scheme for client-side XSS attacks [40].

In summary, our gadget systematization demonstrates the broad
spectrum of potential DOM gadgets beyond traditional script gad-
gets. Attackers exploiting such vulnerabilities can go beyond code
injection to cause significant harm, including unauthorized requests,
phishing, and data leakage.

CCS 25, October 13-17, 2025, Taipei, Taiwan

4.3 Gadget Exploitation

To exploit the gadgets enumerated in §4.2, attackers often need to
hijack the result of DOM query selectors (instructions that read from
the DOM tree), by injecting a crafted markup into the webpage, such
as the one discussed in §2.2.2 for Listing 1. However, DOM APIs like
querySelector () typically operate by selecting the first element in
the DOM tree that matches the given query. This behavior imposes a
significant limitation on attackers for non-event-based DOM reads:
they must inject their malicious node before the benign one in the
DOM tree to ensure it is selected. However, achieving this precise
ordering is not always feasible in real-world scenarios. In this paper,
we propose novel attack strategies that reduce or even eliminate
the above requirement.

Attack 1: Body Element. This technique takes advantage of how
browsers handle the insertion of body elements into the DOM.
By injecting a body element with specific properties matching the
query (such as id and class name), the browser automatically copies
the attributes of the new body element to the existing body element,
even if it was originally injected at the end, which is consistent
with the HTML specifications [16, 22]. This allows the node to be
reliably selected via DOM APIs like querySelector ().

Attack 2: HTML Element. Inside the body of an element, when the
parser encounters an opening html tag, it copies all its attributes to
the outer html element. This ensures that a querySelector on e.g.,
an id, always matches the copied attribute.

Attack 3: Table Element. Another way to move an injected node
before existing nodes is inside a table context. The table element
constrains the valid child elements, and everything else is moved
in front of the table. So if one has injection capabilities in the third
row and the target element is in the first, it suffices to inject a div
tag, which can not occur as a direct child of the table element. Con-
sequently, the HTML parser will move it in front of the currently
open table due to what is called “foster parenting” [5]. This allows
the attacker to overcome some order restrictions, as the injected
tag can move in front of tags that regularly occur prior to it.

Attack 4: Frameset Element. In case the body element was im-
plicitly created, it is possible to remove all regular content and
replace it with a frameset element. This allows to “delete” prior
DOM nodes in some specific cases. However, it greatly restricts the
DOM structure that can be inserted by the attacker as part of the
attack.

Together, these techniques significantly broaden the attacker’s
capabilities, bypassing the need for precise injection ordering. We
quantify the contribution of these new techniques for exploitability
in §6.6.

These techniques are fundamentally similar to concepts used
for modern mXSS attacks, such as those described by Klein and
Johns [46]. However, they serve a completely different purpose.
When abusing DOM parsing particularities for mXSS, the goal is
to confuse a sanitizer and bypass it by “hiding” the payload. In our
case, the goal is completely different. These tricks aim to ensure
that a DOM selector selects the injected attribute even in cases
where the injection context would normally prevent this.

Jan Drescher et al.

© Gadget Detection

Static Dataflow Analysis &%) | Gadgets

@ Crawlin,
|~ . &
A

Dynamic Taint Tracking @

=)

Site List
; i Test PraS/Iroarndr éenrerrétriorngﬂ Inj. points s
3 CN % - : Runtime Monitoring 3
O Gadget Verification E
%Inj. points, Gadgets ~ Dynamlc Testmg O Verified Gadgets

Figure 2: Overview of our methodology.

5 Vulnerability Detection

This section presents our approach to detecting DOM gadgets at
scale. Figure 2 presents an overview of our methodology, which
comprises three steps: (1) Web Crawling, where a Firefox-based
crawler gathers snapshots of webpages (2) Gadget Detection, com-
bining dynamic analysis with a taint-aware browser and static
analysis via Code Property Graphs to track data flows and identify
DOM gadgets; and (3) Exploitation and Markup Injection, where
we test whether markup injection is possible in webpages contain-
ing the identified gadgets to exploit them. The rest of this section
describes each step in more detail.

5.1 Web Crawling

Starting from a list of seed domains, we created a Playwright-
based [18] crawler to collect snapshots of webpages, including
JavaScript code and runtime information, such as DOM snapshots
and HT TP response headers. The crawler collects webpages of dif-
ferent domains following a round-robin strategy, reducing the load
on resource servers (see [64]).

For each domain, it extracts a list of pages and visits them fol-
lowing a depth-first order without URL encoding. It continues until
no further pages are in the queue, a maximum of n =100 pages
have been visited, or the time budget of ¢ = 30 minutes has elapsed,
whichever condition occurs first. For scalability reasons, our crawl-
ing infrastructure uses w = 100 workers in parallel while minimiz-
ing disk I/O by leveraging RAMFS for concurrent writes.

5.2 Gadget Detection

We formulated the problem of detecting DOM gadgets as a data
flow analysis problem, where we intend to track the propagation
of attacker-controlled values from JavaScript DOM read operations
to sensitive instructions. To balance accuracy and coverage, we
used both dynamic and static analysis to detect such data flow
patterns. Dynamic analysis enables us to observe actual runtime
behavior and detect flows manifesting during execution. In contrast,
static analysis provides a broader coverage by examining potential
flows based on code structure. We merged the results from both
approaches, deduplicating flows by comparing key attributes such
as source and sink locations, the types of sources and sinks involved,
and the associated URL of the analyzed webpage.

In the DOM We Trust: Exploring the Hidden Dangers of Reading from the DOM on the Web

5.2.1 Dynamic Data Flows. To measure dynamic data flows, we cre-
ated an extended version of the taint-aware Foxhound browser [19,
45]. Specifically, we enhanced Foxhound to consider all read opera-
tions from the DOM tree as sources, as indicated in Table 2. This
effectively allows us to taint elements in order to be able to detect
DOM gadgets during the crawling process. An important benefit of
dynamic analysis is that it has little to no false positives, i.e., every
data flow recorded by Foxhound actually took place on the page.
Additionally, because Foxhound has full control over the JavaScript
runtime, information that might be obfuscated in the source code
is available. A simple example is that we can record the arguments
for query selector calls with Foxhound.

5.2.2 Static Data Flows. We relied on the static analysis engine
of JAW [39, 42] to detect DOM gadgets. JAW creates a canonical,
graph-based model of the JavaScript program, known as Code Prop-
erty Graph (CPG) [73], which represents the program syntax and
semantics (control and data flows). We extended JAW by creating
queries to traverse the CPG searching for DOM gadget data flow
patterns. We ran static analysis on 10 unique pages of each website
to balance coverage and the high analysis time required by JAW,
which is consistent with prior work [41]. Static analysis helps us
achieve improved code coverage, especially when DOM gadgets
are not executed on page load or are gated by conditions or user
interactions.

5.3 Markup Injection

After identifying pages with DOM gadgets, we need to find an injec-
tion point to exploit them. To this end, we investigate which pages
in our dataset are susceptible to markup injection vulnerabilities.
Our taint-aware crawler also collects data flows from web attacker
sources, like URL and window name, to markup injection instruc-
tions. To identify exploit payloads, we used a similar approach as
prior work [27], where we construct a payload by first breaking
out of any context that might inhibit the injection of an HTML tag.
This break-out sequence is constructed based on the information
available through Foxhound, as we both know the tainted part of
the string and any surrounding text. Afterwards, we either insert an
XSS payload based on the methodology presented in [27] or a div
tag with a custom data- attribute to test for markup injection in
cases where an XSS payload is blocked, e.g., by a sanitizer [34, 45].

Afterward, we test the markup injection payload via runtime
monitoring and dynamically confirm that it works in a browser.
Finally, this component outputs markup injection vulnerabilities
that do not lead to XSS, particularly those that are mitigated by
CSP [72]. We show that these mitigated injection points can become
exploitable again using DOM gadgets.

5.4 Gadget Verification

To verify the existence of data flows from the DOM to gadgets
identified by Foxhound, we automatically construct benign markup
payloads, inject them into the HTML content of the target page
before it is parsed and loaded, and check whether each payload
has entirely reached its intended gadgets after the page has loaded.
The markup is generated based on the selector API type, its query
parameter, and the attributes of the originally targeted element.
We assign a benign payload string with a unique identifier to all

CCS 25, October 13-17, 2025, Taipei, Taiwan

attributes of the generated markup. This unique identifier is derived
from the query expression used in the selector API (source), allow-
ing us to track only the source-sink pairs reported by Foxhound.
Additionally, we wrap all functions of the prototypes of all sinks
to monitor the arguments passed to these sinks and report any
occurrences of our crafted payloads. We only consider a flow as ver-
ified when the entire payload reaches the sink—partial matches are
excluded. The injection point of the markup payload is determined
based on the location of the target element. Once determined, the
generated markup is injected accordingly.

For verifying data flows detected by static analysis, we cannot
use the same approach as with dynamic flows since static analysis
may identify flows that are not immediately triggered on page
load and may require user interaction or specific conditions to
activate. Therefore, we manually verify the existence of such flows
by randomly sampling a subset of flows from each gadget type and
inspecting them individually.

5.5 Exploitations and Attacks

After identifying two distinct sets of webpages—one affected by
markup injection vulnerabilities and the other containing DOM
gadgets—we systematically cross-reference these sets to determine
instances where a DOM gadget can be exploited via a markup
injection point. This step is crucial in assessing the real-world
impact of DOM gadgets. However, not every end-to-end gadget
flow can be exploited for an attack. For instance, one of the observed
gadgets reads the language for the content to be served from a DOM
attribute, sanitizes it using encodeURIComponent, and appends it
to the URL query parameters of a request. While an attacker can
control parts of the URL, namely the 1ang query parameter, this
control cannot be repurposed for an attack.

To assess if a gadget can be used for an attack, we manually
examine the gadget flow and craft a matching payload for the spe-
cific gadget. We then revisit the page, and using the automatically
generated markup as described in §5.4, check where the attacker-
controlled data appears. We use a proxy to insert the generated
markup into the HTTP response, simulating the initial markup
injection. For script execution and markup injection gadgets, we
craft a payload with the appropriate break-out sequence to gain
client-side script execution when the gadget re-inserts our data back
into the DOM. For request, object, link, and WebSocket gadgets,
we examine the outgoing network traffic, searching for the benign
payload of the automatically generated markup. To not inflict any
harm on the web service, we manually examine the code to verify
that an attacker can control relevant parts of the URL or message
content and can exploit it for one of the attacks listed in Table 3.

6 Empirical Evaluation

We now answer RQ2 and RQ3, outlined in §3, by conducting an
end-to-end, large-scale evaluation of DOM gadget prevalence and
impact in the real world. We report the duration of each step during
the large-scale DOM gadget crawl and analysis in Table 4.

6.1 Data Collection

In June 2024, we conducted a large-scale data collection effort using
the crawling infrastructure detailed in §5.1 from an EU vantage

CCS 25, October 13-17, 2025, Taipei, Taiwan

Table 4: Duration of each step of the DOM gadget analysis

Step Duration Comment

Crawling & Dynamic Analysis 2 months
Static Analysis 2 months
Verification of DAST results 4 days
Manual Analysis of results 8 days

5.3 minutes per domain
3 hours per page

16 minutes per page

5 minutes per flow

point. The process targeted the top 15K responsive domains from
the Tranco list (ID: W88P9) [48], a widely-recognized ranking of
websites [58]. From these domains, our crawling pipeline extracted
572581 URLs, of which the data for 522 860 webpages were success-
fully collected, ensuring high data integrity. To maximize coverage,
we repeated the data collection process for each failed URL up to
three times.

The dataset encompasses 19M JavaScript scripts, with an average
of 36 scripts per page. In terms of raw content, the total lines of
JavaScript code (LoC) spanned an impressive 10.3 billion, under-
scoring the vast scale of the collected data and providing a robust
foundation for studying DOM gadgets in the wild.

We conducted a script similarity analysis across the collected
pages. We consider two pages to be similar if the SHA-256 hashes
of their scripts are identical. Thereby, we identified 367 245 unique
pages, highlighting the diversity within the dataset.

6.2 DOM Gadgets In the Wild

In total, we found 2.6M DOM gadgets across 364K webpages, and
9K distinct sites, as per methodology described in §5.2. Table 5
shows the prevalence of DOM gadgets across various source types.
The table highlights differences in the distribution of gadget types
across flows, pages, and domains. We encounter many dataflows
repeatedly during dynamic analysis, because the gadget code runs
repeatedly in a loop or event handler. Thus, we deduplicate the
collected dataflows with the same URL, source function, DOM
selector, and sink.

We observed that Request gadgets are the most frequent over-
all, with 1.2M flows appearing on 263K pages. They are also the
most widespread on the web, appearing on 7.2K sites, indicating
that DOM-controlled network requests are a core pattern across
a broad range of sites, driven largely by instructions like query-
SelectorAll and element.attribute. Following closely, Object
gadgets are also widely distributed across 250K pages, though with
~2x fewer instances. Finally, consistent with prior research [49],
we observed that Code Execution gadgets maintain a moderate
prevalence with 81K flows, remaining a critical security concern.

On the other side of the spectrum, WebSocket and Navigation
gadgets are the least common. WebSocket gadgets, at 174K flows,
appear only on 5.1K pages, mirroring their specialized role in real-
time communication. Navigation gadgets are the least prevalent
overall, with only 3.9K flows across 2.2K pages, showing that direct
DOM-driven navigation changes are rare.

6.2.1 Gadget Verification. Our verification of dynamic flows shows
that, in 357 982 cases (13.38% of all flows), the benign string payload
has entirely reached its intended gadget. Among these verified gad-
gets, Request, Markup, and Link gadgets were the most prevalent,
contributing 65%, 22.6%, and 11.6% of the cases, across 1025, 453,

Jan Drescher et al.

and 703 sites, respectively. In total, we verified at least one gadget in
14 345 web pages across 2259 sites (25% of all sites), which indicates
the prevalence of potentially exploitable DOM gadgets.

For the verification of static flows, we randomly selected a subset
of flows for each gadget type and manually verified them. To ensure
diversity and reduce sampling bias, we selected one data flow per
site. In total, we manually inspected 440 data flows, of which 126
flows (28.6%) were determined to be false positives. Our analysis
reveals that the static pipeline effectively identifies vulnerable flows
to Code Execution, Navigation, and Request gadgets with false
positive rates of 10% (6/60), 15% (18/120), and 7% (4/60), respectively.
However, Link and Object, and Markup gadgets have higher false
positive rates of 54% (54/100) and 44% (44/100), respectively. There
are a few reasons. In many cases, the source and sink were actually
the same DOM element, which was simply being modified, but
the static analysis flagged it as a vulnerable flow. Additionally, we
observed that a few third-party code fragments, which included a
false positive flow, appeared across many websites, amplifying the
false positives. Finally, in other cases, DOM data was not directly
assigned to a sink, but still influenced the sink indirectly, e.g., via
conditions over tainted values. These patterns made it harder for
the static analysis to distinguish between real and benign flows.

6.2.2 New Gadgets and Gadget Types. Our analysis revealed that
77.2% (276,583) of the verified DOM gadgets represent new gadget
types while the remaining 22.8% represent previously known script
gadget types. Some of the latter might be caused by unpatched
websites employing the vulnerable JavaScript libraries covered
by Lekies et al. [49]. Since we are the first to examine the new
gadget classes, we can infer that the gadgets of the new types
(77.2%) are novel vulnerabilities not found in prior work. Unlike
traditional script gadgets, the new gadget types do not result in
markup injection or code execution, highlighting a significantly
broader attack surface than previously understood.

6.2.3 Contribution of Static and Dynamic Analysis. In total, static
analysis identified 59 341 DOM gadgets across 20 688 pages, which
is a rather small fraction of all the gadgets found in Table 3. This
has several explanatory reasons. First, static analysis also analyzed
fewer pages, i.e., ~10% of the pages analyzed dynamically, because
performing static analysis by modeling a web page’s JavaScript
code as a graph and traversing it to identify vulnerable data flows
incurs high computational costs [41]. As mentioned in §5.2.2, we
limited static analysis to 10 unique pages per site to balance cover-
age and scalability. Secondly, we set a conservative depth threshold
of T = 30 on backward graph traversal from sink to source nodes,
as the number of possible data flow slices increases exponentially
with traversal depth. Hence, our static approach may fail to de-
tect very long data flows, which we aimed to detect via dynamic
analysis. Despite these constraints, static analysis revealed valu-
able complementary insights. We observed that in 19 702 pages,
static analysis could identify at least one DOM gadget flow that
dynamic analysis missed. Specifically, static analysis detected at
least one data flow to Code Execution, Markup, and Link gadgets in
5081, 11 065, and 4544 pages, respectively, which dynamic analysis
missed. These findings highlight the prevalence of data flows that
are not triggered during page load but may become active under
specific runtime conditions.

In the DOM We Trust: Exploring the Hidden Dangers of Reading from the DOM on the Web

CCS 25, October 13-17, 2025, Taipei, Taiwan

Table 5: Dataflows from DOM sources into security-sensitive sinks.

DOM Gadget Type

DOM Source ‘ CodeExec Markup Request WebSocket Navigation Object Link ‘ Total Verified
document.querySelectorAll 65,124 71,121 361,870 41,624 1,399 148,795 123,594 813,527 134,222
document.querySelector 3,398 73,940 403,750 68,733 876 147,303 54,605 752,605 128,639
document.getElementsByTagName 4,800 24,312 256,804 34,922 822 192,085 113,801 627,546 39,699
document.getElementByld 5,452 29,060 169,511 17,095 718 52,655 17,376 291,867 21,518
document.getElementsByClassName 2,547 24,533 40,376 8,628 45 32,085 18,221 126,435 33,904
document.getElementsByTagNameNS 322 1,318 9,563 3,727 42 7,415 6,626 29,013 0
document.elementFromPoint 0 2 43 2 0 1,030 3 1, 080 0
document.elementsFromPoint 0 0 10 0 0 25 0
Total 81,643 224,286 1,241,927 174,731 3,902 581,393 334,228 2,642,110

Verified 301 81,098 232,904 0 0 1,990 41,689 357,982
Pages 17,845 109,463 263,946 5,137 2,231 250,596 156,394 364,487 14,345
Sites 1,486 5,347 7,276 367 377 7,523 5,610 9,022 2,259

6.3 Analysis of DOM Selectors

We analyze DOM query selectors to understand properties of
markups attackers need to inject to be able to exploit DOM gadgets.
One prerequisite to exploit a DOM gadget is that the selector is not
constrained in a way that inhibits crafting a matching payload. For
example, a selector that reads a URL from a data- attribute of a
div and sets it as the src attribute of a newly created script tag. A
simple selector like div[data-src] is rather easy to fulfill. If the
selector has additional constraints, e.g., on the shape of the DOM,
like indiv[id="scr-wrapper’] > div > div > div[data-src],
exploitation requires insertion of a subtree in the correct position,
which can be more difficult to achieve.

We used our extended version of Foxhound, as detailed in §5.2.1,
to collect a comprehensive dataset of query selector strings. We
relied on dynamic analysis because it enables the automatic capture
of the exact selector strings used at runtime—many of which are
dynamically constructed and not easily available in static analysis.
To assess the complexity of the DOM selectors we encountered, we
devised a complexity metric based on the Selector Specificity [6]. The
browser computes a selector’s specificity to resolve conflicts, if two
or more selectors try to change the same attribute of an element.
The specificity consists of three scores (A, B, C) which count the
A) ID selectors, B) class and attribute selectors, and C) type and
pseudo element selectors in the selector string. For example, nav
> aldata-x] > divi#id has one ID selector (#id), one class or
attribute selector ([data-x]) and three type selectors, i.e., nav, a,
and div. This results in a specificity of (1, 1, 3). As each of the three
scores counts constraints on the markup, we decided to simply sum
A, B, and C to compute our complexity score.

We computed the complexity score for all selectors from the
deduplicated data flows from Foxhound. This leaves us with
36 272 unique inputs over 1591 979 recorded inputs. Some selec-
tors occur extremely often, e.g., the most frequent selector query
is script[src*="o0tSDKStub’], originating from the OneTrust
Cookie Consent banner, with 355 851 occurrences. Parsing failed
for 13 324 of those across 444 unique values. Reason for failure is
that the API does not report errors, but if the selector is syntacti-
cally invalid, the return value is the same as if no match was found,
i.e., null. In some cases, we observed that Foxhound truncated
overly long selectors in an effort to conserve memory. Neverthe-
less, we were able to correctly compute the complexity score for

35 828 values that occurred 1578 655 times (99%). The most com-
plex selector we encountered is . aside-menu>ul>1i>ul>li>span
, .aside-menu>ul>li>ul>li>a, .aside-menu>ul>li>ul>li>
ul>li>span, .aside-menu>ul>li>ul>1li>ul>li>a, with a com-
plexity score of 28. Here, a fairly deeply nested DOM structure is
required to match the selector, which might be difficult to achieve.
The average complexity is 1.80 and the median complexity 2. This
shows that the majority of encountered DOM selectors do not
pose heavy constraints on the markup required to abuse the DOM
gadget.

6.4 Analysis of Sanitization Code Patterns

Starting from the DOM gadgets discovered via static analysis, we
now analyze them, checking for the presence of input validation or
sanitization checks. As a first step, we reviewed academic and non-
academic literature [3, 8, 12, 13, 17, 20, 34, 39, 45] looking for code
patterns related to sanitization and validation procedures. Then,
we grouped the identified patterns by data types and operation
types, resulting in seven categories, i.e., checks on Strings, checks
on Numbers, checks on Boolean, checks on DOM nodes, regular
expression operations, and sanitization operations. The categories
and code patterns are presented in Table 1 of the supplementary
material we published as part of the research artifact (§8.4). To
increase confidence in the completeness of our discovered patterns,
we manually examined 300 data flows in which none of these pat-
terns were present, finding no new ones. As a second step, we
analyzed the data flows. For this analysis, we focused on the static
analysis data flows as static analysis allows us to precisely extract
the program slice of a given data flow and apply pattern matching
on the code. The table presents the total number of instances each
sanitization operation matched on a data flow code.

Overall, our results indicate that the majority of DOM gadgets
lack even simple sanitization or validation logic. From the 59 341
static data flows, 36 348 of them (61.25% of the total) do not have
patterns related to the String, Regex, DOM, or Sanitizers classes, nor
equality operations (i.e. ==, ===, |==). These patterns are typically
associated with validation or sanitization operations, suggesting
that the data flows lack effective data checking. Of these, 6161 of
them (10.38% of the total) do not contain any of the sanitization
and validation patterns.

CCS 25, October 13-17, 2025, Taipei, Taiwan

6.5 Markup Injection In the Wild

We found 204K dataflows across 1.8K domains to inject HTML
markups into webpages leveraging in-browser dynamic taint track-
ing. Table 6 shows the distribution of the dataflows across various
sinks and injection points.

6.5.1 Verification and False Positives. Unfortunately, not all of the
captured dataflows are exploitable for markup injection, as mod-
ifying the input string can sometimes prevent the dataflow from
being triggered. To identify attacker-controllable dataflows, i.e.,
true markup injection vulnerabilities, we generated test payloads
following the methodology described in §5.3 and tested them at
runtime by monitoring the payload execution. Overall, we identi-
fied 4722 verified dataflows related to markup injection across 34K
webpages in our dataset.

6.5.2 Injection Points for DOM Gadgets. Among 4722 markup in-
jection vulnerabilities, 4379 cases are directly exploitable for XSS,
as these websites neither properly sanitize untrusted user input
nor implement CSP as a browser-based mitigation. Consequently,
leveraging DOM gadgets to enable XSS on these sites becomes
unnecessary. For the remaining 343 markup injection points, the
DOM gadgets that we found in §6.2 are the only viable exploit.

6.6 Analysis of New Attack Techniques

We now quantify the contribution of our newly-proposed attack
techniques of §4.3.

6.6.1 Contribution of New Attack Techniques. An existing markup
injection can only be used to successfully trigger a DOM gadget if
the injected markup has a chance of being selected by the DOM
selector. We evaluate the order of the elements selected by the
DOM gadgets covered in §6.2 and points of markup injection cov-
ered in §6.5. We extract the DOM selectors of the DOM gadgets
as well as the XPath of the injected markup from the data flows
collected by Foxhound. Our crawler collects the HTML snapshots
of the page’s DOM after loading and script execution. We eval-
uate the relative position of the elements by loading the HTML
snapshot in a browser, evaluating the gadget selector and injection
XPath, and comparing the positions of the returned elements using
compareDocumentPosition().

We compared 253K combinations of DOM gadget flows and
markup injection flows to assess their relative positions in the DOM.
In 34% of the cases, the injected markup appeared after the element
selected by the gadget, while in 8% it appeared before. These find-
ings indicate that, for at least 34% of the identified DOM gadgets,
successful exploitation requires the novel techniques introduced in
§4.3, as they can reorder elements in the DOM.

For 57% of the flow combinations, our analysis failed. Both the
selector and the XPath do not return an element if there is no
matching element in the DOM. In this case, we cannot compare
their positions and our comparison fails. We manually examined
why the elements could not be found. In the most frequent case,
the tainted string was written to a newly created element not yet
inserted into the DOM. Subsequently, the element, now containing
the attacker-controlled markup, was inserted into the DOM. Since
Foxhound records the XPath at the time of the injection, it recorded
an XPath of an unattached element that cannot be evaluated against

Jan Drescher et al.

the snapshot of the DOM. The XPath for the markup injection failed
in 39% of the cases, while the gadget selector failed in 7% of the
cases.

6.6.2 Applicability of New Attack Techniques. The presented tech-
niques can improve the odds of a successful attack by abusing par-
ticularities in the HTML parsing process. This of course requires
that the attacker is able to inject these elements in the first place.
To assess the likelihood of this, we tested whether several popular
HTML sanitizers allow these tags to pass through. In case they do
not already do so, we configured them to allow data-x attributes, to
test with a common attribute. This data attribute serves as a place-
holder for arbitrary data- attributes. The CCS 2025 [7] homepage,
for example, uses data-size=x1 to set font sizes, something one
might allow a sanitizer to pass through. The results are provided in
Table 7.

6.7 Gadget Exploitability

We now assess the exploitability of the DOM gadgets that we found
in §6.2 as per methodology described in §5.4, i.e., 357K verified DOM
gadgets across 2.5K sites. The existence of an injection point is a
fundamental requirement to be able to exploit these gadgets. Unlike
prior works [44, 49] that assume that such injection points always
exist, our approach can find injection points automatically. After
cross-referencing the set of potential markup injection dataflows
and verified DOM gadgets (i.e., a DOM write operation followed by
a DOM read instruction), we identified a total of 304,843 end-to-end
dataflows across 1.8K websites. We then filter the results to include
only confirmed markup injection vulnerabilities.

As a result, for 657 flows across 37 sites, we identified both a
verified markup injection flow and a verified DOM gadget flow, to-
gether constituting an end-to-end vulnerability. Table 8 summarizes
our findings.

We point out that, even in the absence of an injection point for
a DOM gadget, websites may still be at risk. A significant portion
of injection vulnerabilities on the web originates from third-party
code, and a site that is not exploitable today could become such if a
third-party script is updated to include a markup injection flaw. In
such cases, an attacker could leverage an otherwise dormant DOM
gadget to escalate the injection into a more impactful vulnerability.

6.7.1 Manual Analysis. We manually examine data flows for 100
domains to identify exploitations and causes for false positives.
We randomly sample 100 domains from the set of domains with
DOM gadget data flows. For each domain, we choose two pages at
random from the crawling results and examine all data flows for
these pages. For each data flow, we revisit the page and manually
assess if the potentially vulnerable flow is still present. If the flow
is still present, we exploit the DOM gadget by injecting matching
markups into the HTTP response. The specific exploit depends on
the type of sink that is present in the flow. For example, for a code
execution gadget, we trigger an alert, whereas for asynchronous
request gadgets, we trigger a request and demonstrate control over
the URL. As a result of this process, we successfully created exploits
for about 10% of the analyzed domains.

For 75% of domains, we observed at least one data flow that was
not exploitable, e.g., due to sanitization. In other cases, we could

In the DOM We Trust: Exploring the Hidden Dangers of Reading from the DOM on the Web

CCS 25, October 13-17, 2025, Taipei, Taiwan

Table 6: Dataflows from web attacker sources into DOM sinks, representing markup injection vulnerabilities.

PN

‘ Source ‘ L]
Sink ‘ loc.href loc.search loc.hash doc.URI ‘ doc.ref postMessage win.name ‘ Flows Verified Pages Sites
innerHTML 29,659 2,164 2,638 2,094 11,373 142,985 38 190,951 4,095 26,140 1,526
document.write 3,286 219 16 2,237 3,695 5 17 9,475 417 6,462 356
insertAdjacentHTML 1,369 72 1 1 162 488 0 2,093 208 1,679 73
document.writeln 318 0 0 0 148 0 0 466 1 343 16
outerHTML 282 3 0 0 5 2 0 292 1 214 12
iframe.srcdoc 145 0 36 0 254 0 0 435 0 299 31
element.before 99 0 0 0 0 0 0 99 0 99 3
element.after 79 25 0 0 68 9 0 181 0 115 6
Total ‘ 35,274 2,495 2,691 4,335 15,708 143,492 55 ‘ 204,050 4,722 34,223 1,849
Table 7: Examined Sanitizing Libraries L $.ajax({)))
2 url: $(".options__page").attr("data-admin-uri"),
3 data: {
4 action: 'moove_gdpr_cookie'
Sanitizer html body table 5 3,
. 6 success: function (data) {
GOng Caja X X v 7 $('.options__page').prepend(data);
js-xss X X v 3 3,
sanitize-html X X v 9 error: function (data) {
DOMPurify =t = v 10 console.log(data);
1 i3

T: DOMPurify blocks both html and body by default, but enabling
RETURN_DOM allows body to pass through and enabling WHOLE_DOCUMENT
enables both html and body to pass through.

Table 8: Summary of verified end-to-end DOM gadget flows.

Vulnerability Sink | Flows Pages Sites
Markup Injection innerHTML 77 13 6
document.write 13 12 3
Request Forgery fetch.url 27 7 5
XMLHttpRequest.open(url) 24 14 8
fetch.body 318 38 2
XMLHttpRequest.send 55 45 6
Code Execution iframe.src 6 6 4
Link a.href 157 105 15
Total | 657 177 37

not trigger the data flow from our inserted markup because of
some condition hidden in minified JavaScript we could not resolve.
For 32% of domains, we encountered at least one data flow that
was no longer present during our manual visit of the page. This
may be caused by changes to the website or because our crawler
encountered different ads that contained vulnerable data flows. This
problem may occur when analyzing websites with third-party code,
as the loaded scripts are unstable between visits.

6.8 Case Studies

We now present a few manually vetted case studies of the con-
firmed vulnerabilities. We chose these DOM gadgets because they
are comprehensive and representative. At the time of writing, the
affected pages did not contain the required markup injection to
exploit the gadgets. We describe the steps of the exploits that will
be possible once a change to the website introduces an otherwise
benign markup injection.

6.8.1 Request Gadget A. This DOM gadget shown in Listing 2
reads a URL from a data attribute and creates an asynchronous
request to that URL. The gadget writes the content of the response
to the DOM using the unsafe prepend method of jQuery. Thus,

Listing 2: Request gadget A

1 <div class='options__page'
2 data-admin-uri="'https://attacker.com'>

Listing 3: Payload for request gadget A

an attacker that controls the URL can inject arbitrary HTML into
the DOM, including malicious scripts. Thereby, this request gadget
enables the same attacks as the previously known script gadgets,
albeit with a different sink. The attack utilizes the ability to control
the source of the content written to the DOM.

The attack works similarly to the example in Figure 1b. The
attacker uses the markup injection vulnerability (e.g., an URL query
parameter reflected into the DOM) to craft an URL that injects
the attacker’s markup into the DOM. They send the crafted URL
including a payload that triggers the DOM gadget to the victim,
who opens it. The victim’s browser loads the website including
the attacker-provided markup in Listing 3. The DOM gadget code
from Listing 2 selects the attacker’s markup because it matches
the selector in line 2. The extracted URL points to the attacker’s
server, which returns an HTML response with a malicious script.
The statement in line 7 writes the content of the response to the
DOM, executing the malicious script.

6.8.2 Markup Injection Gadget B. This DOM gadget shown in List-
ing 4 rewrites every <div> element with class bcembed on the
website and inserts a child element. The gadget reads the data-
bcid attribute and writes the value as the id of the newly inserted
<video> element. Because the newly inserted element is created in-
securely by string concatenation (line 23-24), it is possible to break
out of the id attribute and inject a malicious node. Since the gadget
rewrites every matching <div> element (line 2), the position of
the markup injection is not relevant. However, there are additional
conditions for the vulnerable data flow: The element must match
an additional class. While there are sanitization steps on the value
that the gadget reads from the DOM, they only ensure that the
value will be a valid ID but do not prevent exploitation. This gadget

CCS 25, October 13-17, 2025, Taipei, Taiwan

1 /7 ...

2 e.find('div.bcembed').each((

3 function (e, t) {

4 waypoint_debugle] = jQuery(t).waypoint(

5 (

6 function () {

7 bc_loadplayer (jQuery(this.element));
8 this.destroy ()

9 DI

10 M)
11 /7 ...
12 function bc_loadplayer(e) {

13 void @ !== e.attr('data-bcid') &&

14 e.attr('data-bcid', e.attr('data-bcid"')

15 .replace(/ /g, ''));

16 n = !le.hasClass('bcgallery');

17 if ('live-iframe' == e.ptype || n)

18 if (i) {

19 e.vid = 'becvid-"'

20 + e.attr('data-bcid').replace(/,/g, '-')

21 + '-' + Math.floor (999999 * Math.random() + 2);

22 e.html

23 '<div class="video-js"><video preload="auto" class="
vjs-tech" id=""

24 + e.vid + '"></video></div>"'

25 s

26 /7 ..

Listing 4: Markup injection gadget B

1 <div class='bcembed bcgallery'
2 data-bcid="'testpayload"><img/src/onerror=alert(1)>'>

Listing 5: Payload for markup injection gadget B

is similar to the script gadgets covered by previous work [49] and
can be used to inject malicious HTML wrapped in a benign <div>
element that bypasses sanitization.

The attacker uses the markup injection to inject the markup
shown in Listing 5. When the gadget code concatenates the content
of the data-bcid attribute in lines 23-24, it breaks out of the id
attribute and creates a new with an onerror handler. Subse-
quently, the gadget writes the newly created element to the DOM,
executing the malicious JavaScript code in the onerror handler.

6.9 Script Gadget Benchmark

To assess the false negative rate of our detection pipeline, we eval-
uate it on a benchmark of known script gadget vulnerabilities.
We create a benchmark based on a publicly available collection of
JavaScript libraries with script gadget vulnerabilities [2]. The col-
lection contains 15 proofs of concept for script gadgets in popular
frameworks. We discard two of the samples, Google Closure and
jQuery, because both exploits rely on DOM clobbering.

From each of the remaining 13 libraries we create a benchmark
sample as following: We create a simple website that includes the
library scripts and additonally reflects the content of the URL frag-
ment into the page, resulting in a client-side markup injection
vulnerability. We copy the example code from the libraries docu-
mentation to create a realistic usage scenario of the library and
its features. Afterwards, we crawl and analyze the resulting web-
sites like any other website in §6.2 and test if our tool detects the
vulnerabilities. Our toolchain detects 8 of the 13 script gadget vul-
nerabilities, resulting in a false negative rate of 38.5% We would
have missed one of the benchmark samples during the large-scale
crawl due to a race condition that has since been fixed.

Jan Drescher et al.

7 Related Work

DOM-related vulnerabilities have been the subject of extensive re-
search. One of the earliest and most well-known examples is DOM-
based Cross-Site Scripting (DOM XSS) [50], where untrusted user
input is written directly to the DOM, leading to arbitrary JavaScript
execution. Robust defenses against traditional DOM XSS are well-
established, relying on input validation [34, 61], or on restricting
script execution through mechanisms like Content Security Policy
(CSP) [72].

In recent years, however, the research community has shifted
focus to attacks that bypass these defenses, primarily through the
use of gadgets—code fragments that perform security-sensitive op-
erations based on attacker-influenced data [30, 33, 38, 49, 53, 62,
63]. Gadget-based exploitation has become a recurring theme in
JavaScript security, expanding the scope of DOM-related threats
beyond traditional XSS. Recent studies have investigated gadgets
across various attack surfaces.

Several works have focused on identifying gadgets that are trig-
gered via prototype pollution [30, 38, 53, 62, 63]. GHunter [30]
presented a runtime-based detection pipeline to uncover universal
gadgets in JavaScript runtimes such as Node.js and Deno. By instru-
menting the V8 engine with taint tracking, the authors detected
dozens of previously unknown gadgets, including those leading to
arbitrary code execution and privilege escalation, and provided a
systematic evaluation of mitigations. Dasty [63] builds on dynamic
taint analysis to analyze the server-side JavaScript ecosystem, iden-
tifying gadget flows in NPM packages. Silent Spring [62] explored
the full attack chain from pollution sources to gadgets in Node.js
applications, using a hybrid, static-dynamic detection approach,
demonstrating the feasibility of end-to-end RCE exploits via pol-
luted prototypes.

Other studies highlighted the diversity and complexity of pro-
totype pollution gadget chains. Liu et al. [53] introduced a con-
colic execution framework to discover chained gadgets—where
polluted properties influence other polluted flows—demonstrating
more sophisticated forms of exploitation. On the client side, Kang
et al. [37] proposed dynamic taint analysis to detect instances of
attacker-controlled keys and values in property assignments, al-
lowing attackers to add properties of the prototype object. Kang et
al. [38] improved upon this technique, proposing GALA, a dynamic
analysis framework that identifies gadgets by borrowing existing
defined values on non-vulnerable websites and reusing them on
victim ones where such values are undefined, thus guiding the prop-
erty injection to flow to the gadget sink at runtime. The authors
ran GALA on one million real-world websites, finding previously
undetected gadgets in widely deployed frameworks such as Vue.
These findings illustrate how benign DOM reads can be coerced
into attacker-controlled flows.

Previous research also studied other types of gadgets that ex-
ploit characteristics of JavaScript execution environments to get
triggered. For example, DOM Clobbering gadgets [28, 34, 44], ini-
tially proposed to bypass frame busters [59], transform innocuous-
looking HTML markup into executable code by exploiting unex-
pected bindings between the DOM and JavaScript variables caused
by naming collisions. Khodayari et al. [44] proposed a dynamic
analysis approach to identify DOM Clobbering markups across a

In the DOM We Trust: Exploring the Hidden Dangers of Reading from the DOM on the Web

wide range of mobile and desktop browsers, and fed the resulting
markups into a hybrid detection methodology to detect clobber-
able gadgets in client-side JavaScript code. Heiderich et al. [33]
uncovered mutation-based XSS (mXSS) attacks, demonstrating how
certain DOM mutations performed by browsers, combined with
insecure JavaScript patterns, can act as gadgets that turn initially
safe HTML markup into executable code.

DOM clobbering is related but not similar to DOM gadgets or
script gadgets, vulnerabilities caused by benign scripts on the web-
site explicitly reading data from the DOM. In consequence, the
challenges for creating matching markups and the employed tech-
niques are different. A DOM clobbering markup must fulfill DOM
constraints on nesting and named attributes. Liu et al. [52] proposed
concolic execution to solve these constraints. The constraints on
DOM gadgets markups are simpler; They consist of a selector that
must be matched and an attribute holding the payload. We infer
both based on dynamic or static data flows. However, most DOM
selector methods select the first markup in the DOM, requiring us
to devise techniques to move the attacker-injected markup inside
the DOM.

Closely related to our work, Lekies et al. [49] introduced script
gadgets. These are benign code snippets that attackers can repur-
pose to transform code-less input markup into code execution by
abusing pre-existing DOM selectors, bypassing XSS mitigations
like CSP [72]. Roth et al. [56] evaluated how script gadgets inter-
act with deployed CSPs. Compared to prior works on script gad-
gets, we establish several new gadget types (e.g., Request Gadgets)
based on new vulnerable sinks, perform an end-to-end analysis
where we identify injection points instead of assuming an injection
point exists, and propose new attack techniques for exploitation
of DOM gadgets. Finally, we propose a methodology on how to
detect and verify new gadgets automatically, compared to previous
work’s manual analysis. Taken together, these studies establish
the significance of gadgets as a core abstraction for understanding
exploitability in JavaScript programs. By systematically studying
these vulnerable behaviours, we reveal a broader, underexplored
class of gadget-based vulnerabilities grounded in the interaction
between JavaScript logic and browser-managed DOM state.

8 Concluding Remarks

We summarize our findings and discuss their wider implications.

8.1 Takeaways

8.1.1 DOM gadgets are Ubiquitous. Data flows from the DOM
into security-relevant sinks are prevalent on the web, with nearly
70% of the 522K examined webpages having DOM gadget flows,
suggesting a high reliance on the DOM tree as a data source. Among
the data consumed by gadgets, we have identifiers of additional
web resources or full and partial URLs.

We find that 60% of the critical flows are neither sanitized nor
validated, indicating that developers may not be aware of the risks
posed by DOM reads should an attacker be able to perform a markup
injection.

8.1.2 Script Gadgets Severe but not Prevalent. DOM gadgets
broaden our understanding of critical data flows from the DOM.
Whereas script gadgets focused on script execution as the primary

CCS 25, October 13-17, 2025, Taipei, Taiwan

attack goal, DOM gadgets extend the attack surface to include a
broader range of vulnerabilities. Accordingly, the exploits differ
as well: to exploit a script gadget, the attacker breaks out of the
context into which the gadget inserts the attacker-controlled string,
to gain script execution. For the other DOM gadget classes, the
attacks are more subtle. If the DOM gadget selects data from the
DOM to create the URL for a request, the attacker only needs to
inject matching markup to control the URL.

Our analysis reveals that the new DOM gadget classes are preva-
lent both in number of flows (77%) and number of affected sites.
The most prevalent are Request gadgets, closely followed by Link
and Object gadgets. They occur more often than markup injection
and code execution gadgets covered by related work [49, 56], with
about 6x as many flows. Their consequences are diverse, ranging
from information leakage to request forgery and code execution.

8.1.3 Complex Defense Landscape. Addressing the security risks of
DOM gadgets is challenging. Currently, each gadget class requires
its own mitigation strategy, without a universal solution.

The first line of defense for developers is input validation, which
involves verifying that input strings contain expected values before
using them in sensitive operations. For instance, developers should
validate strings used by Network and WebSocket gadgets to ensure
they are valid URLs. It is also important to note that these gadgets
cannot be mitigated with traditional anti-CSRF solutions, such as
anti-CSRF tokens. When a site relies on these tokens, the logic of
adding them to outgoing requests is often part of the same gadget.
Similarly, SameSite cookies provide only partial protection: While
they mitigate cross-site requests, they are ineffective against same-
site forgery attacks [43].

For other classes of gadgets, such as Markup Gadgets, custom
input validation procedures may not be ideal, and developers might
consider other solutions such as Trusted Types. Unfortunately,
while Trusted Types are effective in practice, they are currently
only available in Chrome, with Safari and Firefox still working on
their implementations, which limits their overall impact. Addition-
ally, Trusted Types are notoriously difficult to use in practice and
do not offer comprehensive protection. For example, they are un-
likely to provide any protection for JavaScript sinks [57]. A stronger
defense may need to come from browser vendors. Similar to the
push to escape < and > when serializing HTML [14], browsers
could implement similar measures when reading properties, effec-
tively preventing almost all DOM gadgets in the markup injection
category, such as HTML-based script gadgets. Future work could
assess the impact of this approach on performance and website
functionality via field trials.

8.2 Threats to validity

We relied on web crawling to collect snapshots of web pages and
their associated DOM gadgets. However, web crawling is a chal-
lenging task [64, 65], and our approach may have missed certain
pages containing DOM gadgets, such as those hidden behind user
authentication, requiring specific user interactions, or accessible
only through particular web clients and vantage points. In addition,
we limited static analysis to ten random pages of each site due to the
large analysis time required by JAW (see, i.e., [41]). Furthermore, we

CCS 25, October 13-17, 2025, Taipei, Taiwan

focused on DOM read APIs that can be controlled via query selec-
tors. While alternative techniques such as DOM traversal through
element relationships and XPath expressions are theoretically vi-
able for reading DOM content, they tend to be highly brittle and
sensitive to minor UI changes, making them significantly harder to
exploit in practice. Therefore, we excluded them from our analysis.
Consequently, our findings likely represent a lower-bound estimate
of DOM gadget prevalence on the web.

We manually examined the intersection of pages with DOM gad-
gets and markup injection to validate the vulnerabilities. The DOM
gadget exploits that we pass as payloads of the markup injection
are more complex than regular XSS exploits, leading to more false
negatives where the injected markup breaks during injection. Auto-
matic validation to increase scalability must combine and solve the
constraints on markups written via the markup injection and those
imposed by the gadgets DOM selector. Future work could solve this
problem with concolic execution similar to Symbolic DOM [52].

8.3 Ethical Considerations

We first describe how our experiment design minimizes the poten-
tial for harm and then touch on our disclosure process.

Harm Avoidance. We designed our experiment to avoid any harm
to website operators and their visitors. Firstly, our crawler uses a
round-robin crawling strategy, so that concurrent crawler instances
do not visit the same domain at the same time. This minimizes the
resource overhead caused by our experiment. We also transmit a
header that identifies our crawler as a research project and contains
an opt-out link. We also do not interact with the website, so we avoid
accidentally interfering with the regular operation. Our crawler
passively collects loaded scripts and taint flows. This happens purely
on the client side, i.e., our machine.

We only test the exploitability of the client-side JavaScript code
for the markup injection and DOM gadget exploitability experi-
ments. This means we are the attacker and the victim at the same
time, avoiding interference with other users. When evaluating the
DOM gadget exploitability that triggers web requests, we only in-
jected a benign string to check where it is inserted into the request.
We examined the code to identify sanitization and encoding without
sending any malicious requests to the server.

Vulnerability Disclosure. We are disclosing verified DOM gadgets
to the affected site operators, per best practices for vulnerability
notification [70]. We prioritize our reports by severity, focusing first
on end-to-end exploitable data flows and websites with a known
injection point. For any vulnerability explicitly mentioned in the
paper, we anonymized the domain to reduce the risk of exploitation
by malicious actors.

8.4 Open Science

In the spirit of open science, we publicly release all our artifacts?.
This includes our crawling infrastructure to collect snapshots of
webpages, static analyzer to detect DOM gadgets, tooling to iden-
tify and verify markup injection vulnerabilities, dynamic analysis
scripts to verify the discovered DOM gadget data flows, and other

https://doi.org/10.5281/zenodo.16981621

Jan Drescher et al.

evaluation scripts. We have integrated our improvements for DOM
gadget detection into the main branch of the Foxhound project?.

Acknowledgments

We gratefully acknowledge funding by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) under Germany’s
Excellence Strategy — EXC 2092 CASA - 390781972 as well as from
the European Union’s Horizon 2020 research and innovation pro-
gramme under project TESTABLE, grant agreement No 101019206.

References

[1] 2018. Client-Side CSRF. https://www.facebook.com/notes/facebook-bug-
bounty/client-side-csrf/2056804174333798/.

[2] 2023. Google Security Research POCs. https://github.com/google/security-
research-pocs/tree/master/script- gadgets.

[3] 2024. js-xss: Sanitize untrusted HTML (to prevent XSS) with a configuration

specified by a whitelist. (2024). https://github.com/leizongmin/js-xss.

2024. Link Manipulation. (2024). https://portswigger.net/kb/issues/00501003_lin

k-manipulation-reflected.

[5] 2025. 13.2.6.1: Creating and inserting nodes. (2025). https://html.spec.whatwg.o
rg/#creating-and-inserting-nodes.

[6] 2025. 17. Calculating a selector’s specificity. (2025). https://www.w3.org/TR/se
lectors-4/#specificity-rules.

[7] 2025. ACM CCS 2025. (2025). https://www.sigsac.org/ccs/CCS2025/.

[8] 2025. Cross Site Scripting (XSS) Prevention Cheat Sheet. (2025). https://cheats
heetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_She
et.html.

[9] 2025. Cross-Site WebSocket Hijacking. https://portswigger.net/web-security/w
ebsockets/cross-site-websocket-hijacking

[10] 2025. Document: evaluate() method. (2025). https://developer.mozilla.org/en-
US/docs/Web/API/Document/evaluate.

[11] 2025. Document Object Model (DOM). https://developer.mozilla.org/en-
US/docs/Web/API/Document_Object_Model.

[12] 2025. DOM Based XSS Prevention Cheat Sheet. (2025). https://cheatsheetseries
.owasp.org/cheatsheets/DOM_based_XSS_Prevention_Cheat_Sheet.html.

[13] 2025. Encoding APIL. (2025). https://developer.mozilla.org/en-US/docs/Web/API/
Encoding_APL

[14] 2025. Escape "<" and ">" in attributes when serializing HTML. (2025). https:
//github.com/whatwg/html/issues/6235.

[15] 2025. EventTarget Interface. (2025). https://developer.mozilla.org/en-
US/docs/Web/API/EventTarget.

[16] 2025. HTML Living Standard. (2025). https://html.spec.whatwg.org/.

[17] 2025. JavaScript Reference. (2025). https://developer.mozilla.org/en-US/docs/We
b/JavaScript/Reference.

[18] 2025. Playwright browser automation framework. https://playwright.dev/.

19] 2025. Project Foxhound. https://github.com/SAP/project-foxhound.

[20] 2025. sanitize-html: Clean up user-submitted HTML, preserving whitelisted
elements and attributes. (2025). https://github.com/apostrophecms/sanitize-html.

1] 2025. Selectors Level 4. (2025). https://www.w3.org/TR/selectors-4/.

2] 2025. The DOM Living Standard. (2025). https://dom.spec.whatwg.org/.

3] 2025. W3C Standards and Drafts. (2025). https://www.w3.org/TR/.

4]

]

[4

2025. WHATWG Specifications. (2025). https://spec.whatwg.org/.

Devdatta Akhawe, Adam Barth, Peifung E Lam, John Mitchell, and Dawn Song.

2010. Towards a formal foundation of web security. In IEEE CSF.

[26] Adam Barth, Collin Jackson, and John C. Mitchell. 2008. Robust defenses for
cross-site request forgery. In Proc. of the ACM Conference on Computer and
Communications Security (CCS).

[27] Souphiane Bensalim, David Klein, Thomas Barber, and Martin Johns. 2021. Talk-

ing About My Generation: Targeted DOM-Based XSS Exploit Generation Using

Dynamic Data Flow Analysis. In Proc. of the European Workshop on System Secu-

rity (EUROSEC). doi:10.1145/3447852.3458718

Michat Bentkowski. 2019. XSS in GMail’s AMP4Email via DOM Clobbering.

(2019). https://research.securitum.com/xss-in-amp4email-dom- clobbering/.

Frederik Braun, Mario Heiderich, and Daniel Vogelheim. 2024. HTML Sanitizer

AP, Section 4.2, DOM Clobbering. W3C Draft Community Group Report (2024).

https://wicg.github.io/sanitizer-api/.

[30] Eric Cornelissen, Mikhail Shcherbakov, and Musard Balliu. 2024. {GHunter}:
Universal Prototype Pollution Gadgets in {JavaScript} Runtimes. In USENIX
Security Symposium.

[31] Jeremiah Grossman, Seth Fogie, Robert Hansen, Anton Rager, and Petko D Petkov.

2007. XSS Attacks: Cross-Site Scripting Exploits and Defense. Syngress.

[28

[29

Zhttps://github.com/SAP/project-foxhound

https://doi.org/10.5281/zenodo.16981621
https://www.facebook.com/notes/facebook-bug-bounty/client-side-csrf/2056804174333798/
https://www.facebook.com/notes/facebook-bug-bounty/client-side-csrf/2056804174333798/
https://github.com/google/security-research-pocs/tree/master/script-gadgets
https://github.com/google/security-research-pocs/tree/master/script-gadgets
https://github.com/leizongmin/js-xss
https://portswigger.net/kb/issues/00501003_link-manipulation-reflected
https://portswigger.net/kb/issues/00501003_link-manipulation-reflected
https://html.spec.whatwg.org/#creating-and-inserting-nodes
https://html.spec.whatwg.org/#creating-and-inserting-nodes
https://www.w3.org/TR/selectors-4/#specificity-rules
https://www.w3.org/TR/selectors-4/#specificity-rules
https://www.sigsac.org/ccs/CCS2025/
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://portswigger.net/web-security/websockets/cross-site-websocket-hijacking
https://portswigger.net/web-security/websockets/cross-site-websocket-hijacking
https://developer.mozilla.org/en-US/docs/Web/API/Document/evaluate
https://developer.mozilla.org/en-US/docs/Web/API/Document/evaluate
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://cheatsheetseries.owasp.org/cheatsheets/DOM_based_XSS_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/DOM_based_XSS_Prevention_Cheat_Sheet.html
https://developer.mozilla.org/en-US/docs/Web/API/Encoding_API
https://developer.mozilla.org/en-US/docs/Web/API/Encoding_API
https://github.com/whatwg/html/issues/6235
https://github.com/whatwg/html/issues/6235
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget
https://html.spec.whatwg.org/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference
https://playwright.dev/
https://github.com/SAP/project-foxhound
https://github.com/apostrophecms/sanitize-html
https://www.w3.org/TR/selectors-4/
https://dom.spec.whatwg.org/
https://www.w3.org/TR/
https://spec.whatwg.org/
https://doi.org/10.1145/3447852.3458718
https://research.securitum.com/xss-in-amp4email-dom-clobbering/
https://wicg.github.io/sanitizer-api/
https://github.com/SAP/project-foxhound

In the DOM We Trust: Exploring the Hidden Dangers of Reading from the DOM on the Web

[32]

[33]

[34]

[35]

[36

[37]

[38

[39

[40

[41]

[42

[43]

[44

[46]

[47]

[48

[49

[50]

(51

Chong Guan, Kun Sun, Zhan Wang, and WenTao Zhu. 2016. Privacy breach by
exploiting postmessage in html5: Identification, evaluation, and countermeasure.
In Proc. of the ACM Asia Conference on Computer and Communications Security
(ASIA CCS). 629-640.

Mario Heiderich, Jérg Schwenk, Tilman Frosch, Jonas Magazinius, and Edward Z
Yang. 2013. mXSS Attacks: Attacking well-secured Web-Applications by us-
ing innerHTML Mutations. In Proc. of the ACM Conference on Computer and
Communications Security (CCS).

Mario Heiderich, Christopher Spith, and Jérg Schwenk. 2017. DOMPurify: Client-
side protection against xss and markup injection. In Proc. of the European Sympo-
sium on Research in Computer Security (ESORICS).

Gareth Heyes. 2024. Using form hijacking to bypass CSP. (2024).
//portswigger.net/research/using-form-hijacking-to-bypass-csp.
Simon Holm Jensen, Peter A. Jonsson, and Anders Meller. 2012. Remedying the
Eval that Men Do. In Proceedings of the ACM SIGSOFT International Symposium
on Software Testing and Analysis.

Zifeng Kang, Song Li, and Yinzhi Cao. 2022. Probe the Proto: Measuring Client-
Side Prototype Pollution Vulnerabilities of One Million Real-world Websites.. In
Network and Distributed System Security Symposium (NDSS).

Zifeng Kang, Muxi Lyu, Zhengyu Liu, Jianjia Yu, Rungi Fan, Song Li, and Yinzhi
Cao. 2024. Follow My Flow: Unveiling Client-Side Prototype Pollution Gadgets
from One Million Real-World Websites. In Proc. of the IEEE Symposium on Security
and Privacy (S&P).

Soheil Khodayari, Thomas Barber, and Giancarlo Pellegrino. 2024. The Great
Request Robbery: An Empirical Study of Client-side Request Hijacking Vulner-
abilities on the Web. In Proc. of the IEEE Symposium on Security and Privacy
(S&P).

Soheil Khodayari, Kai Glauber, and Giancarlo Pellegrino. 2025. Do (Not) Fol-
low the White Rabbit: Challenging the Myth of Harmless Open Redirection. In
Network and Distributed System Security Symposium (NDSS).

Soheil Khodayari, Kai Glauber, and Giancarlo Pellegrino. 2025. Do (Not) Follow
the White Rabbit: Challenging the Myth of Harmless Open Redirection. (2025).
Soheil Khodayari and Giancarlo Pellegrino. 2021. JAW: Studying Client-side CSRF
with Hybrid Property Graphs and Declarative Traversals. In USENIX Security
Symposium.

Soheil Khodayari and Giancarlo Pellegrino. 2022. The State of the SameSite:
Studying the Usage, Effectiveness, and Adequacy of SameSite Cookies. In Proc.
of the IEEE Symposium on Security and Privacy (S&P).

Soheil Khodayari and Giancarlo Pellegrino. 2023. It’s (DOM) Clobbering Time:
Attack Techniques, Prevalence, and Defenses. In Proc. of the IEEE Symposium on
Security and Privacy (S&P).

David Klein, Thomas Barber, Souphiane Bensalim, Ben Stock, and Martin Johns.
2022. Hand Sanitizers in the Wild: A Large-scale Study of Custom JavaScript
Sanitizer Functions. In Proc. of the IEEE European Symposium on Security and
Privacy (EuroS&P).

David Klein and Martin Johns. 2024. Parse Me, Baby, One More Time: Bypassing
HTML Sanitizer via Parsing Differentials. In 45th IEEE Symposium on Security
and Privacy. doi:10.1109/SP54263.2024.00092

Lukas Knittel, Christian Mainka, Marcus Niemietz, Dominik Trevor Nof}, and Jérg
Schwenk. 2021. Xsinator. com: From a formal model to the automatic evaluation
of cross-site leaks in web browsers. In Proc. of the ACM Conference on Computer
and Communications Security (CCS).

Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob, Maciej Ko-
rezynski, and Wouter Joosen. 2019. Tranco: A Research-Oriented Top Sites
Ranking Hardened Against Manipulation. In Network and Distributed System
Security Symposium (NDSS).

Sebastian Lekies, Krzysztof Kotowicz, Samuel Grof3, Eduardo A Vela Nava, and
Martin Johns. 2017. Code-reuse attacks for the web: Breaking cross-site scripting
mitigations via script gadgets. In CCS.

Sebastian Lekies, Ben Stock, and Martin Johns. 2013. 25 million flows later: large-
scale detection of DOM-based XSS. In Proc. of the ACM Conference on Computer
and Communications Security (CCS).

Xhelal Likaj, Soheil Khodayari, and Giancarlo Pellegrino. 2021. Where We Stand
(or Fall): An Analysis of CSRF Defenses in Web Frameworks. In 24th International

https:

[52

[53

(54]

o
2

(56

[57

[58

[59

[60

[61

e
o,

[63

[64

[69

[70

CCS ’25, October 13-17, 2025, Taipei, Taiwan

Symposium on Research in Attacks, Intrusions and Defenses.

Theo Liu, Zhengyu amd Lee, Jianjia Yu, Zifeng Kang, and Yinzhi Cao. 2025. The
DOMino Effect: Detecting and Exploiting DOM Clobbering Gadgets via Concolic
Execution with Symbolic DOM . In USENIX Security Symposium.

Zhengyu Liu, Kecheng An, and Yinzhi Cao. 2024. Undefined-oriented program-
ming: Detecting and chaining prototype pollution gadgets in node. js template
engines for malicious consequences. In Proc. of the IEEE Symposium on Security
and Privacy (S&P).

Wenbo Mei and Zhaohua Long. 2020. Research and Defense of Cross-Site Web-
Socket Hijacking Vulnerability. In IEEE International Conference on Artificial
Intelligence and Computer Applications (ICAICA).

William Melicher, Anupam Das, Mahmood Sharif, Lujo Bauer, and Limin Jia.
2018. Riding out DOMsday: Towards Detecting and Preventing DOM Cross-Site

Scripting.. In Network and Distributed System Security Symposium (NDSS).
Sebastian Roth, Michael Backes, and Ben Stock. 2020. Assessing the impact of

script gadgets on csp at scale. In Proc. of the ACM Asia Conference on Computer
and Communications Security (ASIA CCS). 420-431.

Sebastian Roth, Lea Grober, Philipp Baus, Katharina Krombholz, and Ben Stock.
2024. Trust Me If You Can — How Usable Is Trusted Types In Practice?. In USENIX
Security Symposium.

Kimberly Ruth, Deepak Kumar, Brandon Wang, Luke Valenta, and Zakir Du-
rumeric. 2022. Toppling top lists: Evaluating the accuracy of popular website
lists. In Internet Measurement Conference (IMC).

Gustav Rydstedt, Elie Bursztein, Dan Boneh, and Collin Jackson. 2010. Busting
frame busting: a study of clickjacking vulnerabilities at popular sites. (2010).
Christian Schneider. 2019. Cross-Site WebSocket Hijacking (CSWSH). https:
//christian-schneider.net/CrossSiteWebSocketHijacking.html

Theodoor Scholte, William Robertson, Davide Balzarotti, and Engin Kirda. 2012.
Preventing input validation vulnerabilities in web applications through auto-
mated type analysis. In IEEE Annual Computer Software and Applications Confer-
ence (COMPSAC).

Mikhail Shcherbakov, Musard Balliu, and Cristian-Alexandru Staicu. 2023. Silent
spring: Prototype pollution leads to remote code execution in Node. js. In USENIX
Security Symposium.

Mikhail Shcherbakov, Paul Moosbrugger, and Musard Balliu. 2024. Unveiling the
invisible: Detection and evaluation of prototype pollution gadgets with dynamic
taint analysis. In The Web Conference.

Aleksei Stafeev and Giancarlo Pellegrino. 2024. SoK: State of the Krawlers - Eval-
uating the Effectiveness of Crawling Algorithms for Web Security Measurements.
In USENIX Security Symposium.

Aleksei Stafeev, Tim Recktenwald, Gianluca De Stefano, Soheil Khodayari, and
Giancarlo Pellegrino. 2024. YURASCANNER: Leveraging LLMs for Task-driven
Web App Scanning. (2024).

Cristian-Alexandru Staicu and Michael Pradel. 2019. Leaky images: Targeted
privacy attacks in the web. In USENIX Security Symposium.

Sid Stamm, Brandon Sterne, and Gervase Markham. 2010. Reining in the Web
with Content Security Policy. In The Web Conference. 921-930.

Marius Steffens, Christian Rossow, Martin Johns, and Ben Stock. 2019. Don’t
Trust the Locals: Investigating the Prevalence of Persistent Client-Side Cross-Site
Scripting in the Wild. In Network and Distributed System Security Symposium
(NDSS).

Marius Steffens and Ben Stock. 2020. Pmforce: Systematically analyzing postmes-
sage handlers at scale. In Proc. of the ACM Conference on Computer and Commu-
nications Security (CCS). 493-505.

Ben Stock, Giancarlo Pellegrino, Christian Rossow, Martin Johns, and Michael
Backes. 2016. Hey, you have a problem: On the feasibility of large-scale web
vulnerability notification. In USENIX Security Symposium.

Avinash Sudhodanan, Soheil Khodayari, and Jaun Caballero. 2020. Cross-Origin
State Inference (COSI) Attacks: Leaking Web Site States through XS-Leaks. In
Network and Distributed System Security Symposium (NDSS).

Mike West and Antonio Sartori. 2024. Content Security Policy Level 3. W3C
Working Draft (2024). https://w3c.github.io/webappsec-csp/.

Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck. 2014. Modeling
and Discovering Vulnerabilities with Code Property Graphs. In Proc. of the IEEE
Symposium on Security and Privacy (S&P).

https://portswigger.net/research/using-form-hijacking-to-bypass-csp
https://portswigger.net/research/using-form-hijacking-to-bypass-csp
https://doi.org/10.1109/SP54263.2024.00092
https://christian-schneider.net/CrossSiteWebSocketHijacking.html
https://christian-schneider.net/CrossSiteWebSocketHijacking.html
https://w3c.github.io/webappsec-csp/

	Abstract
	1 Introduction
	2 Background
	2.1 Script Gadget Vulnerability
	2.2 DOM Gadget Vulnerability
	2.3 Threat Model

	3 Problem Statement
	4 Systematization of DOM Gadgets
	4.1 Reading from DOM
	4.2 DOM Gadgets and Vulnerabilities
	4.3 Gadget Exploitation

	5 Vulnerability Detection
	5.1 Web Crawling
	5.2 Gadget Detection
	5.3 Markup Injection
	5.4 Gadget Verification
	5.5 Exploitations and Attacks

	6 Empirical Evaluation
	6.1 Data Collection
	6.2 DOM Gadgets In the Wild
	6.3 Analysis of DOM Selectors
	6.4 Analysis of Sanitization Code Patterns
	6.5 Markup Injection In the Wild
	6.6 Analysis of New Attack Techniques
	6.7 Gadget Exploitability
	6.8 Case Studies
	6.9 Script Gadget Benchmark

	7 Related Work
	8 Concluding Remarks
	8.1 Takeaways
	8.2 Threats to validity
	8.3 Ethical Considerations
	8.4 Open Science

	References

