SSRF vs. Developers: A Study of SSRF-Defenses in PHP Applications

Malte Wessels*', Simon Koch*", Giancarlo Pellegrino*, Martin Johns
¥ Technische Universitiit Braunschweig
¥ CISPA Helmholtz Center for Information Security

{malte.wessels, simon.koch, m.johns}@tu-braunschweig.de, pellegrino@cispa.de

Abstract

Server-side requests (SSR) are a potent and important tool
for modern web applications, as they enable features such
as link preview and web hooks. Unfortunately, naive usage
of SSR opens the underlying application up to Server-Side
Request Forgery — an underappreciated vulnerability risk. To
shed light on this vulnerability class, we conduct an in-depth
analysis of known exploitation methods as well as defenses
and mitigations across PHP. We then proceed to study the
prevalence of the vulnerability and defenses across 27,078
open-source PHP applications. For this we perform an initial
data flow analysis, identifying attacker-controlled inputs into
known SSR functions, followed up by a manual analysis of
our results to gain a detailed understanding of the involved
vulnerabilities and present defenses. Our results show that
defenses are sparse. The hypermajority of our 237 detected
data flows are vulnerable. Only two analyzed applications
implement safe SSR features.

Since known defenses are not used and detected attacker-
controlled flows are almost always vulnerable, we can only
conclude that developers are still unaware of SSR abuses and
the need to defend against them. Consequently, SSRF is a
present and underappreciated danger in modern web applica-
tions.

1 Introduction

Server-side requests (SSRs) are a convenient service-to-
service communication pattern in which a web service sends
HTTP requests to external entities. Modern web applications
use SSRs to implement many user-facing functionalities, such
as URL previews [36] or integration of third-party content,
such as external calendars [16]. While essential in practice, if
not implemented correctly, SSRs can be abused, introducing
a wide variety of security risks, ranging from attacks such
as network reconnaissance [32] to high severity ones such as
remote code execution (RCE) attacks.

*Both authors contributed equally to this research.

SSRF ranks among the OWASP Top 10 [31] and CWE
Top 25 [40] security risks. Recent incidents suggest that web
applications are still exposed to SSR vulnerabilities. For exam-
ple, an attacker recently elevated an attacker-controlled SSR
vulnerability affecting Microsoft Exchange servers into an
RCE vulnerability, bypassing authentication and firewalls, re-
sulting in email theft [3, 17]. Most recently, PyTorch’s Torch-
Serve suffered from an arbitrary code execution flaw caused
by an SSRF flaw, which allowed the attacker to load the ma-
licious model [4]. Even applications that attempt to defend
themselves frequently get it wrong, such as vSphere, which
employed URL validation but suffered from an information
disclosure attack through SSRF [2].

Unfortunately, we know little about the prevalence of SSR
vulnerabilities and the effectiveness of the existing defenses,
as the research community has given SSRs limited attention.
Up to this point, prior work has been conducted only on a
small scale and was focused on either understanding and
exploring the security risks (i.e., Pellegrino et al. [32]) or
novel defenses (i.e., Jabiyev et al. [21]). This paper addresses
this gap by providing a large-scale analysis of SSR threats in
PHP web applications.

Analyzing PHP SSRF vulnerabilities, at scale, and the code
patterns associated with defenses is particularly challenging.
The lack of reliable, scalable and flexible investigation tools
hinders such analysis because it requires collecting, analyz-
ing, and reasoning on millions of lines of code. Tools such as
PHPJoern [9], a Code Property Graph Generator, have previ-
ously been employed in large-scale analysis of PHP programs.
However, our evaluation has revealed significant inaccuracies,
such as an incorrect control flow graph and consequently in-
accurate data flows edges, thereby increasing the likelihood
of false positive results. Thus, beside our SSRF study, we also
present an up-to-date version of the CPG generator for PHP
web applications aiding us in our static analysis.

In this paper, we present the first static security measure-
ment of SSR threats in PHP source code. Starting from a thor-
ough survey of existing academic and non-academic work on
SSR vulnerabilities, attacks, and defenses, we create an up-to-

date taxonomy of SSR threats. Then, we use our taxonomy to
study the prevalence of SSR vulnerabilities and defenses in
real web applications by downloading and analyzing 30.870
popular open-source PHP web applications on GitHub.

To infer if protection mechanisms against SSR vulnerabil-
ities are present, we study these applications with SURFER,
a flexible static analysis PHP framework tailored to sup-
port exploratory analysis of PHP vulnerabilities. SURFER
works on top of our novel PHP bytecode code property graph
(CPG) [47]. SURFER successfully analyzed 27,078 reposito-
ries. In this set, 15.308 applications utilize API sinks, such as
file_get_contents, that are potentially susceptible to SSR
problems. For 1.040 of these applications, SURFER was able
to identify at least one potentially suspicious flow into such
sinks. To further narrow down the set of vulnerability candi-
dates, we only consider cases in which a direct data flow from
user-provided input into the sinks exists, and the adversary
controls the significant parts of the passed URL value. After
applying these processing steps, we end up with 141 PHP
projects that utilize server-side request sinks in a potentially
insecure manner.

To thoroughly examine the existence of potential defensive
measures and their robustness, we follow up with a manual
inspection of these applications. The results of this analysis
paint a somber picture: More than half of the identified ap-
plications use no defensive measures against SSRF and, thus,
are trivial to exploit. Only three projects leverage dedicated
existing SSRF-secure request mechanism and only two of
the remaining PHP projects deployed robust countermeasures
against sophisticated attack techniques, such as using DNS
rebinding. Thus, our analysis demonstrates a widespread ig-
norance by developers in respect to SSRF vulnerabilities.

In summary, this paper makes the following contributions:

* A survey and usage study of existing open source SSR
abuse mitigation techniques in PHP.

* A PHP Code Property Graph generator based on the
modern CPG framework.

* A CPG based static analysis tool chain (SURFER) to
identify SSRF vulnerable code.

* A large scale study of 27,078 PHP projects for SSRF
vulnerabilities and mitigation techniques.

Organization of the paper We first discuss the difference
between SSR and SSRF as well as the challenges of defending
against it, deriving our research questions (2). After having
established the required background, we detail the current
state of SSRF mitigation techniques in popular open-source
frameworks (3). We then lay the groundwork for our tooling
and present SURFER, as well as our Manual Analysis to per-
form our large-scale static analysis study (4). The results of
our analysis are given next (5), followed by a discussion of

req(URL) URL
— T

= = External

ke

Figure 1: A Server-Side Request.
req(localhost)

/\
Client 2 Server SSRF

Bes

Figure 2: An SSRF attack that accesses local resources.

the implications, including a case study and the answer to
our research questions (6). Finally, we provide an overview
of related work (7) and conclude with a summary of our key
takeaways (8).

2 A Primer on SSRF

We briefly introduced the SSR feature and its evil variation
SSRF. In this section we are providing a primer on why server-
side requests exist (2.1) and how they can turn into SSRF (2.2
arriving at our research questions (2.3).

2.1 Server-Side Requests

An application requires a server-side request as soon as it
needs information that is not stored within the application
components itself. Common examples are webhooks, pre-
views of links, and interaction with external APIs like pay-
ment or authentication providers.

The chain of events leading to a server-side request starts
with a (user) request for an application resource, depending on
remote data. For example, if the application wants to display
a link preview, it must perform a request and retrieve the
data required for the preview to answer the client’s request.
Figure | visualizes this event chain.

User-input-controlled SSRs are allowed for several reasons.
For instance, webhooks and link previews target user-provided
URLSs by design. Other SSR use cases allow the user to affect
parts of the target URL, such as URL parameters.

2.2 SSRF: Server-Side Requests Going Rogue

Suppose an SSR request can be influenced by user input be-
yond the scope envisioned by the developer. In that case,
attackers can leverage this as an attack vector and guide the
request to malicious hosts and services. The developer is

responsible for ensuring that user-provided data cannot unin-
tentionally influence a request, e.g., by changing the target to
network-internal resources. How an attacker can exploit their
ability to influence the request depends on the deployment
context, including the network topology, the host machine’s
configuration, and the influence’s scope.

If a server with a vulnerable application runs localhost-
accessible services, an attacker can use the SSRF to access
normally denied resources. Figure 2 visualizes such an attack.
As in our introductory examples, this enables an attacker to
conduct network reconnaissance, secret stealing, or even RCE.
Cloud services often serve HTTP APIs on the local network,
providing configuration and metadata [7, 12, 21]. An SSRF
vulnerability exposes this internal API to attackers.

Even if all local resources are adequately protected, an
attacker can still abuse an SSRF vulnerability. Vulnerable
public access points can be attacked via SSR requests from
SSRF-vulnerable servers. As the vulnerable server performs
the request, the attacker hides their identity, impeding inves-
tigations into attacks or laundering the presumed host to an
unsuspecting third party.

Sometimes, vulnerabilities such as SSR occur in authen-
ticated areas of an application. They should not be ignored.
Firstly, not all authenticated users should possess power over
the whole system, e.g., regular users vs. admins. Secondly,
superuser rights inside an application, such as admin rights
in a CMS, do not equal to any rights on the host OS. This
applies especially in managed hosting environments, where
users might have superuser rights inside their application but
not on the underlying machine. However, in both cases, a
malicious user or web admin could exploit an SSRF vulnera-
bility to gain access to sections of the application they are not
authenticated for or the underlying host OS.

2.3 Research Questions

SSRF poses a risk to anybody using SSR features, but the
state of SSRF is an orphaned domain in current research. To
address this, we formulate four research questions that each
provide a distinct insight:

RQ1: What is the current state-of-the-art of SSRF defenses?

RQ2: Are web application developers using existing SSR
mitigations?

RQ3: Are web application developers using homegrown
SSR mitigations?

RQ4: How many web applications are prone to SSR abuses?

3 Survey Of Attacks and Defenses

SSRF is a multifaceted vulnerability class that allows for
varied exploitation options. The same holds for defending
against SSRF abuses. This warrants a detailed discussion of

known attacks and defenses according to the literature to
frame our search later on.

We start our systematization from Pellegrino et al. [32]’s
work on SSR attacks and amend it with results from an
academic literature survey. Additionally, we explored non-
academic sources systematically by searching the web for
‘SSRF’ with keywords such as ‘Defense’ and ‘best practice’.
This resulted in the non-academic sources [8, 18, 25, 26, 30,
39, 44] as well as the academic sources [21, 28, 32]. A system-
ized overview of our results on SSR attacks and application-
level defenses is given in Table 1. Table 2 augments it with
details about possible defense evasions and the respective
fixes.

3.1 Attacks

Across the literature, we identified six distinct classes of at-
tacks that leverage SSRF vulnerabilities to perform malicious
and unintended activities:

(A1) Recon Attack: The first class of attack tries to gain
information about a server’s network using the SSRF vul-
nerability to reach behind the firewall and gain access to
network internals. An attacker can identify deployed services
and available machines using return values or timing-based
side channels.

(A2) Origin Laundering: In the second class of attack, the
attacker uses the SSRF vulnerability to misuse the server as
a proxy to serve malicious data from another website. This
can be used to circumvent block lists implemented by the
browser. An SSRF-vulnerable website can be misused as a
proxy serving otherwise blocked malicious content.

(A3) Denial of Service: The next attack category is De-
nial of Service (DoS) attacks, usually split into three distinct
subtypes across the literature.

Consider an SSR service using a GET parameter as input
and reflecting the SSR’s response. An attacker can craft a URL
directing the service to a domain hosting illegal or known
malicious content. They then provide this prepared link to a
web scanner. When the scanner requests the prepared link,
the SSR service requests the embedded target and mirrors
the content. The scanner then flags the SSR service due to
malicious content. Consequently, an attacker can use an SSRF
vulnerability to put the victim server on block lists and thus
achieve a denial of service. Such a DoS is also possible on
a non-technical level. For example, if the prepared link is
reported to the authorities, the SSR provider could face legal
action.

The remaining two kinds leverage amplification of the
request. In case the SSRF does not trigger a single but multiple
requests to a target, the vulnerable service can be abused as

Attacks D1 URL Valid. D2 DNS Valid. D3 Secure Conf. D4 Response Modification
2
El =
=z § ,fi =9 E g 3= =
g 5 B2 £ S e £ E =
g £ o E 3 = e} o = = =
s £ E % B S = > SO R
17 T = -V - =3 s Z z) & =
Al Recon attack Port scan . o
Network scan AN . o [21, 30, 31, 32, 49]
A2 Origin Laundering A A . . . [32]
A3 DoS attacks by blocklist A ° A [30]
attack ES JAN o [32]
attack Ampl. A o [32]
A4 Bridging Attack . . [32, 44]
AS Exploiting SSBs A A [28]
A6: Local Res. Leak A o A [30, 39]

Table 1: Overview over SSR attacks and application-level defenses. o: Defense successfully prevents the attack. o: Defense
mitigates some version of the attack. /A: Defense works in an allow list scenario.

Evasion Technique | Evaded Def. Techni Fix

URL parser well-established,

confusion attacks hardened parser

D2 | DNS rebinding IP pinning

rechecking on each redirect
or disabling redirects

DI [8,21,29, 31, 39, 44]
[8,21,31]

[30]

insufficient parsers

IP validation

D3 | redirects singular checks

Table 2: Defense evasion and respective fixes.

an amplifier to conduct DoS attacks. The same is possible the
other way around if a targeted service serves large or multiple
responses, leading to a DoS of the vulnerable server.

(A4) Bridging Attack: The fourth kind of attack is bridg-
ing attacks. Bridging attacks can happen when an attacker
can control the protocol of a request, allowing the attacker
to bridge between different protocols. A notorious example
is the Gopher protocol. Since Gopher is simplistic, HTTP
requests can be interpreted as Gopher requests. If the SSR
client supports Gopher, an SSR can quickly turn into Remote
Code Execution via bridging attacks, as shown by Gupta [18].

(AS) Exploiting SSB: The fifth class of attack exploits the
client used to perform SSR. Musch et al. [28] established the
risk of using a full browser as a client for conducting SSRs.
Given the constant struggle of browser vendors to keep up
with the most recent exploits, an outdated browser executing
arbitrary requests can easily become an attacker’s gateway to
the server.

(A6) Local Resource Leak: The sixth and final class of
SSREF covers exploitation accessing otherwise non-reachable
local resources via a request to an internal IP or localhost.
This is the most commonly known variation of SSRF and was
featured in Figure 2.

3.2 Defending Against SSRF

Across the literature, we identified four distinct approaches
to defend against SSRF, each with its caveats and drawbacks.

(D1) URL Validation: The most immediate solution to
ensure that only intended targets are used for the SSR is vali-
dation based on the string on which the request is based. This
validation can cover parts or the complete set encompassing a
URL - scheme, domain, port, path, and query — using either
an allowlisting or a denylisting approach.

While this is the most apparent defense, it has severe
limitations. The correctness of the allow/deny procedure is
paramount, and past events have shown that validating URLs
is not trivial [1]. This results in Parser Confusion attacks,
a well-documented attack on insufficient parsers. These at-
tacks bypass an implemented mitigation via parser bugs or
unexpected encodings. Therefore, to parse user input, well-
established correct parsers should be used [21, 31]. Conse-
quently, the whole URL has to be validated, as only prefixing
protocol and domain in front of the user input might not be
sufficient, as the user input can contain characters that confuse
the parser [44].

A robust and complete URL allow-listing can defend
against SSR abuses, as it limits the requests to well-known
benign targets [30]. Denylisting is insufficient since attackers
can always register or overtake new domains.

(D2) DNS Validation: Using DNS validation expands on
checking the destination URL by validating the actual tar-
get, as it ensures that only a predetermined set of IPs can be
requested. As the URL is resolved, the corresponding IP is
validated against an allow or deny list, ensuring only intended
targets. However, this defense has its challenges, as a cunning

attacker could change the targeted IP between the check and
the actual request time.

A proper implementation has to resolve the domain only
once and then keep using the resolved and validated IP. This
advanced defense is called IP pinning and provides the only
reliable defense against attacks targeting local resources with-
out unduly restricting the versatility of the SSR feature. IP
Pinning protects against the DNS Rebinding validation bypass
attack.

In a variant of the DNS validation approach, the target is
validated against a denylist of unwanted targets, such as lo-
calhost. This can be used as a defense for applications that
take arbitrary user input as a target by design, e.g., URL pre-
views. However, this technique is limited by the ability of the
developer to ascertain the deployment context. If they miss
targets in complex deployment scenarios, this technique is
insufficient. For example, suppose only typical local targets
are blocked, but the application is deployed in a cloud envi-
ronment. In that case, attackers can still access cloud-internal
IPs hosting meta-data and configurations.

(D3) Secure Configurations: Shifting the focus from ac-
tual application code to feature flags and configurations
of application components, the third type of defense cov-
ers secure configurations. To avoid bypasses resulting from
HTTP redirects, the used HTTP client should either reject
redirects in general or apply the target validation after each
redirect [39]. Additional important security settings are vis-
iting only HTTP(s) URLs, mitigating A4, and not expos-
ing an Open Origin Policy (OOP). Le., they shouldn’t set
the Access-Control-Allow-Origin header to *; otherwise,
they are susceptible to being used for Origin Laundering.

Because XML External Entities can fetch external re-
sources, previous work included disabling XML External
Entities as an SSRF mitigation. Still, since this is a) a general
security issue and b) off by default since PHP 8 [41], we will
not discuss it further in this work.

(D4) Response Modification: The fourth and final ap-
proach to mitigate the effect that turns an SSR feature into
SSRF can be achieved by modifying the response an SSR pro-
vides. The response can be wrapped to not directly reflect the
accessed content or use the Content-Disposition header
to prevent a browser from directly rendering the response [27].
Either approach reduces the ability to abuse the SSR feature
as a proxy (A2). Finally, imposing a rate limit and fixing the
response time would severely hamper an attack’s ability to
conduct a recon attack (A1) or a denial-of-service attack (A3).
However, no response modification prevents A4 to A6.

3.3 Further Defenses and Threat Model

Multiple mitigation-level approaches that expand past the ap-
plication level and touch the SSR’s configuration have been

pitched. On a network level, the SSR can be routed through
a proxy [21, 39], ensuring requests can neither access local
resources nor devices on the internal network. Furthermore,
a robust network segmentation can ensure that no local re-
sources can be accessed. Authentication should be enabled
for all services [39]. This approach only affects A6 and po-
tentially impacts A1, making all other attacks feasible.

Tennant [39] proposed the concept of a SSRF Jail, where
DNS and networking calls are hooked on the OS level. How-
ever, they note that it is not suitable as a practical solution
since applications have to request internal, i.e., deny listed,
resources for valid reasons, which a naive hooking solution
would prevent.

Threat Model In this work, we study the SSRF mitiga-
tions that developers deploy. Therefore, we assume a bug and
vulnerability-free PHP standard library.

If we mention allow-listing approaches, we assume devel-
opers have a complete, up-to-date list of IPs or domains they
control and trust. To summarize our exploration of the SSRF
attacks and defenses and the resulting thread model: We as-
sume an attacker who can access a service that affords the
capability to trigger and influence the target of a request.

3.4 Existing SSRF Defense Implementations

We now understand the attacks an SSR feature must be de-
fended against and a set of working defenses and mitigations.
The remaining question is whether libraries used to make
SSRs provide developers with the means to do so securely.
To answer this question, we survey existing PHP frameworks,
libraries, and HTTP clients with SSR capabilities.

Table 3 lists all PHP Frameworks included in our survey
and the standalone PHP HTTP clients. We compiled this list
by searching the web for the most used and popular PHP
frameworks and clients. Additionally, we included all clients
listed by the HTTPlug project [43]. The first column indicates
if a framework offers an HTTP client and, therefore, SSR
capabilities.

To evaluate SSR capabilities as well as SSRF defenses,
we manually checked the documentations for mentions of
Server-Side Request Forgery. We found that only five HTTP
clients offer any defense:

Symfony Since Version 5.1. Symfony provides the
NoPrivateNetworkHttpClient decorator, which ships mit-
igation against SSRF, which blocks requests to internal net-
works (D2) [37, 38]. Technically, the decorator hooks into
the request process and is called after the DNS resolution to
check if the resolved IP address is on a predefined denylist of
internal IP addresses.

SafeCurl SafeCurl [14] blocks requests to internal IPs (D2)
and pins the protocol to HTTP(S) (D3). Optionally, it provides
DNS Rebinding protection by implementing a check of the
resolved IP vs. a denylist (D2).

Framework SSR capability Defense
WordPress v
Laravel v'via Guzzle
Symfony

Yii

CakePHP

FuelPHP
Windwalker

Zend

Laminas

Codelgnite

PHPixie

HTTP Client
Guzzle

SafeCurl

SafeURL

HTTPlug

PECL HTTP
ReactPHP Sockets
WordPress Requests
Buzz

Httpful

PHP stdlib

PHP curl ext.

AN

NSNS %

vvia Curl

> X X X X X X X% I x

N

X
D2, D3
D2, D3
D2, D3 (via plugin)

SNSSSSSNSSANANS

X X X X X X X

Table 3: PHP frameworks and HTTP clients included in our
survey. The two columns indicate if they offer SSR capabil-
ities and implement SSRF mitigations. v'= Exists, X= Non-
existent, T = exists, but is vulnerable.

SafeURL IncludeSec team [20] presented a set of safer
HTTP clients in 2016, including SafeURL for PHP. It is a fork
of SafeCurl.

HTTPlug plugin The HTTP client abstraction HTTPlug
can be used with plugins to extend its functionality. Benoist
[10] published a plugin that introduces SSRF mitigation ca-
pabilities for HTTPlug. It is ‘inspired by SafeCurl” and has
the same capabilities as SafeCurl.

Guzzle Guzzle is a popular third-party HTTP library. It
does not provide an SSR defense, however the issue was
already raised in the issue tracker [34] and a domain allow list
was proposed. However, the issue was closed due to inactivity.

WordPress

We will now present our findings on WordPress.
wp_http_validate_url vulnerabilities ‘Word-
Press provides functions such as wp_safe_remote_get
that promise safe requests via the wp_http_validate_url
function: ‘The URL is validated to avoid redirection and
request forgery attacks.” [46]. We tested the first part of this
statement with a status 307 redirection, but all functions
of the function family followed the redirection except the
_head variation. We checked the second part of the statement
(request forgery protection): WordPress attempts to sanitize

the URL with respect to internal IPs but does not pin the
resolved IP address. It is, therefore, vulnerable to DNS
Rebinding attacks. Since we could bypass both promised
safety features, we don’t consider it a safe client for this work
and included it as a regular sink for our later study.

Disclosure We constructed a Proof-of-Concept and dis-
closed the DNS Rebinding issue to WordPress. However, the
issue was closed as a duplicate of a report from 2017. We also
reported the issue of unexpected redirection to WordPress.

Safe to use Sanitizer? Additionally, WordPress provides
the function esc_url_raw. The documentation states, ‘The
resulting URL is safe to use in [...] HTTP requests.” [45].
The last statement is wrong and dangerously misleading since
the function does not defend against SSRF and SSR abuses.
In our later studies, we found data flows solely relying on
this function to sanitize the input of an SSR sink; refer to
Section 5.3. Disclosure: We reported the issue to WordPress.

Overall, only one framework and three clients support pro-
tection against SSRF, while several others support SSR capa-
bilities without warning users about their risks or providing
SSR defenses. Note that since most HTTP clients are sup-
ported by the HTTPlug system, they could be combined with
the plugin to make them safe.

3.5 Usage Study

To evaluate if applications in our data set use the HTTP clients
with some form of offered protection, we used ripgrep [15]
to conduct a string-based search for usage of the correspond-
ing HTTP clients. We constructed search expressions from
usage examples, i.e., we searched for use statements, new
statements, and fully qualified function names.

We found four repositories using safer HTTP clients in our
dataset of 30.870 applications. One of them is the composer
backend packagist. It is using a safe SSR request in its
GitHub migration code. Another application, with safe HTTP
client usage, is authored by one of the maintainers of one
of the HTTP clients. This means that effectively, only three
third-party open-source applications are using an HTTP client
with a defense available.

Only a fraction of the frameworks that provide SSR func-
tionality discuss SSRF in their documentation, and only Sym-
fony provides an actual SSRF defense. Only the SafeCurl
family provides an SSRF defense out of all the pure HTTP
clients. If used through the HTTPlug framework, most clients
could be secured using a plugin inspired by SafeCurl. But
nobody is actually using these defenses.

This study shows that developers do not use existing coun-
termeasures against SSRF. This raises the question of whether
they implement SSR defenses themselves. Or are they not
using any defense at all? We need to inspect the source code
of the applications for homegrown SSRF mitigations to solve
this question.

a:=1
ci=2
ifa<b
echo a
else
echo ¢

(a) Computation of a max
value. Highlighted state-
ments might influence the

slicing criterion echo max. and the green edges the DDG.

(b) The CPG representation of Figure 3a with the nodes
that might influence the slicing node echo max. The
black edges represent the AST, the blue edges the CFG,

(c) The extracted program slice for echo a
of Figure 3b. The green lines represent data
dependency and the blue line represents
control dependency.

Figure 3: A sequence of visualizations showing the transformation of a computer program (32a) into a Code Property Graph (3b)

and finally an extracted program slice (3c).

4 Identifying SSRF Vulnerable Code

Given the complexity of SSRF, we want to study its preva-
lence and its expression in common software. For this, we
develop a static analysis methodology that leverages a Code
Property Graph (CPG) code representation [47] and interpro-
cedural data flow analysis to identify interfunctional data flow
from user-controlled sources into a known SSRF sink. Subse-
quently, we manually analyze identified data flows to gain an
in-depth understanding of vulnerable flows and any present
attempts to defend against SSRF exploitation.

We first lay the theoretical groundwork establishing our
static analysis methodology (4.1), which is followed by de-
scribing our subsequent manual analysis of any identified data
flow (4.2).

4.1 Automatic Static Analysis

To present our static analysis methodology, we start by giving
a brief introduction to CPGs (4.1.1) and Data Flow Analysis
(4.1.2), followed by an explanation of how we leverage those
techniques to detect SSRF vulnerabilities (4.1.3).

4.1.1 PHP Code Property Graphs

A CPG is a combination of multiple different graph repre-
sentations of program source code [47] — most prominently
the Abstract Syntax Tree (AST), Control Flow Graph (CFG),
Data Dependency Graph (DDG), and Call Graph (CG). The
ASTs of each method of the analyzed program are the forest
that forms the basis of the CPG. Each remaining graph (CFG,
DDG, CQG) is layered into the ASTs by reusing the existing
AST nodes and adding corresponding edges. For example, by
adding CFG edges between subsequently executed statements.
Figure 3b provides a visualization of a CPG representing the
code in Figure 3a.

We present an up-to-date PHP CPG generator that is not
based on the source code but utilizes the PHP interpreter’s in-
ternal bytecode representation. The PHP interpreter provides a
debug function that dumps the bytecode representation of syn-
tactically valid PHP source code. Our CPG generator parses
this bytecode dump into an AST structure. The main advan-
tage of using the bytecode representation is that the dump
comes with a CFG, which we use to add our CFG edges. This
leads to a high degree of CFG correctness as the CFG is taken
directly from PHP. Based on the CFG, we generate the data
dependency graph using a standard algorithm [5]. Another
advantage of using the bytecode representation provided by
the interpreter is that each function and method reference
is represented with a fully qualified name, including possi-
ble namespaces or class names in the case of static methods.
Therefore, we create the call graph by matching the qualified
names of functions and methods with their definitions if they
are unique. In cases where the names are not unique, e.g.,
method names shared across class definitions, we do not cre-
ate a call edge. Our tool is implemented against the publicly
available specifications and framework for the Code Property
Graph [48] and is publicly available'.

PHPJoern We decided against using the existing PHPJo-
ern ([9]) due to shortcomings we encountered. Besides being
unmaintained and deprecated by its authors, we will discuss
the two major shortcomings:

PHP Compatibility: PHPJoern can only generate CPGs
for code compatible with PHP 7.1. PHP 7.1 has been dep-
recated and superseded by several minor and major releases
introducing new (syntax) incompatible features. As a result,
PHPJoern is unable to analyze modern PHP code and skips
corresponding files that can thus not be analyzed.

CFG: PHPJoern generates the control flow graph itself,
which leads to inconsistencies. exit () and die (),commonly

Thttps://github.com/SSRE-vs-Developers

https://github.com/SSRF-vs-Developers

A v A W o =

used by PHP developers to stop a script prematurely in if
a check fails, are the culprits for the inconsistent behavior.
Implemented checks are commonly access controls, exit on
failures, or user input validations. Figure 4 provides a minimal
code example. If a condition (line 3) is met, the process ends
with an exit call (line 4). Otherwise, line 6 is executed. The
echo is unreachable if the condition is satisfied due to the
exit call. PHPJoern generates a control flow edge between the
exit()-node (4) and the echo (6). This is wrong.

Our bytecode CPG does not suffer from this issue because
we get the CFG directly from the PHP interpreter. Therefore,
we eliminate the potential for derivations between the actual
PHP control flow as interpreted by the PHP engine and our
CFG.

<?php

echo "init";

if ($condition) {
exit ();

}

echo "code";

Figure 4: PHP code that triggers the CFG bug in PHPJoern.

4.1.2 Data Flow Analysis

To perform the data flow analysis, we extract the subgraph
that forms the input value to a given sink to perform the data
flow analysis. Figure 3c provides a visualization of a data
flow extracted from the CPG in Figure 3b.

Our data flow implementation starts by following back the
data dependency edges leading into the sink call and collect-
ing the involved nodes and edges recursively until all subse-
quent data dependency edges are consumed. After finishing
the intrafunctional analysis, we identify each function call
and function parameter usage and follow the call edges to
the target and source nodes. The algorithm is then restarted
from those nodes again. Our procedure stops as soon as there
are no further nodes and edges to be added. The result is a
subgraph containing all nodes involved in forming the input
value for a given start call, i.e., a program slice.

4.1.3 SURFER - Detecting SSR(F) with Program Slicing

To identify potential SSRF vulnerabilities, we start out by
searching for common SSRF sinks (Appendix 8.1) within
a given CPG. Each such statement then serves as a starting
point for our program slicing.

We reconstruct the possible input strings to the detected
sinks based on the extracted program slice by traversing the
slice across its data dependency edges. Starting at the slice
leaves, i.e., the initial input values, we collect the applied trans-
formations for each step until we reach the sink. This process
results in a tree structure. Leaves represent the input values,

e.g., constants and variables. Nodes represent the transforma-
tions, and the root is the sink. We traverse the tree, starting at
the leaves, and apply the transformations we encounter. This
procedure depends on the semantics of each transformation
and leverages the individual bytecode instructions stored in
the nodes. Thus, if multiple leaves lead to a concatenation,
we combine them. If they lead to an assignment, we create
a list of multiple outcomes, as multiple incoming dataflows
indicate that multiple values are possible.

As this procedure is only used as a filter for our later manual
analysis, we are liberal in the transformations we apply, and
if we do not know the semantics of an instruction, e.g., an
unknown function call, we pass the arguments through so as
not to miss a possible vulnerability. Global variables, e.g. the
super globals $_REQUEST, $_POST, and $_GET, are marked
in the output. This allows us to recognize user-controlled
sections of the input values passed into the sink and reason
about a possible SSRF vulnerability due to user-controlled
input.

As discussed in 2.2, we assume that existing sources and
sinks are reachable, e.g., if they are behind some access con-
trol system, we assume that an attacker has access to them.
This attack scenario is interesting in more complex deploy-
ment scenarios such as managed hosted services where regular
users might have admin rights in the web app but not on the
barebone machine.

4.2 Manual Investigation of Candidates

Applying SURFER reduces the initial set of projects of web
applications to those also containing a data flow into a sink
with an abstract representation of the value passed into the
sink. However, a simple data flow analysis is not sufficient
to achieve our goal of identifying the prevalence of SSRF
and accompanying insufficient defenses. A defense does not
necessarily reside on the data flow but can be contained in
the direct (conditionals) or indirect (assertions) control flow
associated with it. Consequently, we performed a manual
in-depth analysis of each identified flow.

We take the candidates found by the previous static analysis
and analyze them manually for possible defenses against SSR
attacks and to determine if they are vulnerable. We start by
filtering the apps into three distinct categories to remove any
applications that are vulnerable by design or cannot be con-
sidered a proper web application, to begin with (Section 4.2).
Next, we analyze whether a detected data flow is trivially
exploitable (e.g., direct application of a sink on user inputs) or
if a data flow is a false positive. Finally, we perform a manual
in-depth exploitation and defense analysis to establish how a
detected data flow can be exploited and whether any form of
defense is present (Section 4.3).

Filtering for Apps Our overarching goal is to answer RQ4
and RQ3, i.e., are developers of applications using home-

grown defenses, and how many applications are vulnerable to
SSR abuses? This entails filtering any flow that is either irrel-
evant to our attacks or not representative of real applications.

Based on our reconstructed inputs, we filter out any flow
for which an attack does not have control over the domain.
We approximate this by only taking these candidates into
consideration where attacker-controlled input is at the start
of the reversed string. All of the discussed attacks require
the attacker to control the domain, consequently, any flow for
which this is not the case is not interesting for our overarching
research questions.

Next, we survey all remaining flows and their correspond-
ing applications to determine the type of project they belong
to. We discard flows sourced from examples or test code. But
most importantly, we remove any flow that are detected in
‘hacking tools’. Hacking tools are projects that do not contain
a real application but are used for red and blue teaming, such
as Capture-the-Flag tasks and solutions, applications that are
vulnerable by design for educational purposes, and malicious
applications such as web shells. These are not representative
of the regular developer and application and are thus out of
the scope of our research.

4.3 Detailed Analysis

The remaining flows are inspected in-depth in a manual anal-
ysis for all known defense techniques detailed in Section 3.2
by manually retracing the data and control flow.

D1 URL Validation We analyze if any validation of the
input URL takes place and distinguish between allow-list and
deny-list approaches. Additionally, we categorize its imple-
mentation (e.g., via a regular expression) and which parts of
the URL are checked, e.g., if only non-HTTPS requests are
prevented. Additionally, we note any usage of a proper URL
parser or homegrown solution. Finally, we assess whether
breaking any present URL validation is possible.

D2 DNS We check for the presence of DNS validation and
distinguish between DNS allow and denylisting, as well as if
IP pinning is used.

D3 Configuration If we detect any configuration of the
used sink we analyze how it affects redirection (i.e., enabled
or disabled), if only http(s) requests are possible, and if there
is a Open-Origin-Policy configured.

D4 Response Modification Finally, we analyze how the
response of the SSR is used and, more significantly, if it is
returned. If it is returned, we check if the result is wrapped
or reflected as-is and if a Content-Disposition header is set.
Additionally, we check for rate-limiting routines and fixed
response time mechanisms.

5 Results

We have established SSRF as an intricate and relevant security
issue and proposed a methodology and an implementation

— SURFER - to detect SSRF vulnerable code and its possi-
ble protections. In this section, we describe the data set we
searched with SURFER (5.1). We then discuss the parame-
ter as well as the metadata surrounding our search (5.2) and
present the raw results of SURFER, as well as the result from
our manual analysis (5.3).

5.1 Data Set

1600
= Repo With Sink
mmm CPG With Sink

1400
= Surfer Success
-

Flow Detected
1200

1000

800

i III

I||I

.I
600 “ !I
H
|
- ||||| ||I
10

Count

200

Figure 5: Stars of the repositories available, converted to a
CPG, successfully analyzed, and with a flow detected. Only
repositories that contain a sink are included.

. I|| || I

= I II--
10° 10! 10? 10° 104 10°

10°
Lines of Code

1000 Repo With Sinks

CPG With Sink
Surfer Success
Flow Detected

800

6

I=}
o

Count

4

o
S

Figure 6: Lines of Code of the repositories available, con-
verted to a CPG, successfully analyzed, and with a flow de-
tected. Only repositories that contain a sink are included.

Our collection of open-source PHP applications was re-
trieved from GitHub — the largest code hosting platform. We
used the public API to acquire all PHP applications with 26 or
more stars> and started the download on July 31th, 2023. The

2this occurred organically through the limitations of the GitHub API

process took 6 hours and 40 minutes and occupied 411 GB
of RAID SSD storage. Our final data set consists of 30.870
repositories.

We applied our CPG generator to each project and success-
fully created 28.325 CPGs. The CPG generation was run on
a AMD EPYC 7702P with 504 GB RAM with 10 parallel
processes. Each generation was allocated 20 GB of RAM
and forcefully terminated after 10 minutes. To determine the
coverage of relevant repositories in our dataset, we conducted
another ripgrep-based search for calls of our SSR sinks. This
is a rough over-approximation. 15.308 of our 30.870 repos-
itories had at least one match. The distribution of stars and
lines of code of the analyzed projects is displayed in Figure 5
and Figure 0, respectively. We have only included those that
contain some SSR sink.

5.2 Applying SURFER

We compiled PHP functions that can trigger network requests
in default configurations and included the popular ‘curl’ ex-
tension [42]. Additionally, we amended the list with functions
from WordPress, as it is the most-used PHP framework. Sinks
requiring a specific configuration and protocol were excluded,
e.g.,if allow_url_include is set to true, the include and
require functions of PHP can trigger network requests. Our
final list includes 15 function calls we use as sinks. The calls
are listed in Appendix 8.1.

We ran SURFER with a timeout of 40 minutes and 20 GB
of JVM heap space per analysis on a AMD EPYC 7702P
machine. SURFER was done after 11 hours. SURFER success-
fully analyzed repositories that sum up to 107.4 mil. lines of
PHP source code in 1.4 mil. files’. By average, each repository
had 17.8k lines of code and 50.5 files.

5.3 Manual Analysis

In this section, we will discuss the results of our manual
analysis. A visualization of the first few steps can be found in
Figure 7 as a Sankey plot.

After the first pass of our manual analysis, we categorized
our dataset. The dataset consists of 1.040 apps with some data
flow. After filtering for dataflows with user input at the start
of the string, we obtained a dataset of 237 flows. It consists
of 158 flows we categorized as an app, 71 as a hacking tool, 7
as test code, and 1 as an example.

Of all the flows labeled as belonging to an application, 39
are trivially exploitable, 18 were false-positives, and 101 re-
quired further analysis. The false positives were mostly due to
over-approximations in our static analysis for unknown func-
tion calls and objects. In 65 flows, the host part of the URL
was attacker-controllable; in 36, it was not. A full overview
of the first steps of our manual analysis pipeline can be found
in the Sankey diagram in Figure 7.

3all lines of code and num. of files are measured via cloc [11]

domain attacker-controlled (65)

manual analysis (101)

app (158)
i domain not attacker-controlled (36) I

. false positive (18)

Itrivially exploitable (39)

flows (237)

hackingtool (71)

[Jtest(7)
——example (1)

Figure 7: Sankey plot of analyzed flows.

Table 4 provides an overview of our findings regarding de-
fense techniques 3.2 and 3.2. Potentially vulnerable flows fall
into one of three categories: those without URL validation,
allow-list style validation, or deny-list style validation. The
most used implementation type was regular expressions. Ad-
ditionally, five flows were found that use a good URL parser,
and 14 validations were identified as broken. 216 flows val-
idated no special part of the URL, while 10 did validate the
scheme.

(D2) DNS Defenses No DNS resolution or pinning was
used.

(D3) Configuration Four candidates were found that
changed the redirection behavior. They all disabled it. No
candidate set an Open Origin Policy. Table 5 provides an
overview of the configuration defaults of the sinks. Table 6
provides an overview of the frequency of sinks. The core PHP
provided sinks, i.e., file_get_contents, getimagesize,
and get_headers accept non-HTTP(S) URLs by default. As
discussed in Section 3.4, the WordPress functions do not
disable redirects, except for the head function. Unsurpris-
ingly, the WordPress HEAD functions and the PHP built-in
get_headers function do not follow redirections. As their
primary purpose is to return headers, redirection headers
could never be polled by these functions if they were exe-
cuted instead of returned.

(D4) Response Modification 15 flows returned the SSR
result, and 13 did so in a wrapped manner, i.e., they wrapped
the result in a JSON object and returned that or used some
other processing step. No flow was found using a Content-
Disposition header, rate-limiting, or fixing the response time
to a constant value.

#
no validation 38
category allowlisting 26
denylisting 10
Regex 12
is_file 10
strpos 6
substr 5
implem. WP’s esc_url_raw 4
type opendir 4
in_array 2
WP’s clean_url 1
is_readable 1
wp_http_validate_url 1
broken validation 14

Other .
Secure, well-established URL parser 5
none 216
only scheme 10
only host 2
validated | only path 3
URL parts | only query 1
scheme and host 4
scheme and query 1
... all other combinations 0

Table 4: Analysis results for URL validation (D1).

Default Configuration

Sink redir. disabled HTTP(s) only

file_get_contents
get_headers
getimagesize

curl (init and setopt)
wp_* exc. head

wp_ (safe_) remote_head

N X N\ X% N\ %
NN N X X X

Table 5: Default configuration behavior of the SSR sinks.

Proper Defenses We found two apps (three flows) that
implement a proper defense. Both use an allow-listing ap-
proach. One app uses parse_url to extract and compare the
host against an allow-list. The other app defines a regular
expression that only allows user input in parts of the query,
like this: https://example.com/path/.*/foo.txt.

6 Discussion

This section will discuss our results, including valuable in-
sights for other work. We will present two case studies, discuss
our limitations, and finally answer our Research Questions.

Survey Result I: Community Knowledge We have es-
tablished that the techniques to exploit SSRs are widely dis-

Sink #
file_get_contents 85

curl_init 24
getimagesize 24
get_headers 11
Wp_remote_get 10
Wp_remote_post 2
requests::get 1
wp_remote_head 1

Table 6: Frequency of sinks in candidates classified as ‘app.’

cussed in the literature and community. SSRF can be used
as a stepping stone to deliver payloads for other vulnerabil-
ities, circumvent firewalls, etc. The range of SSR abuses is
exorbitant.

Survey Result II: SSRF Defenses Ready-to-be-used de-
fenses against SSRF exist in Symfonfy’s HTTPClient and
the SafeCurl family of tools. WordPress tries to implement
some defense but fails to do so. Since Symfony is a major
framework and SafeCurl is effectively a drop-in replacement,
we expected to find some usage. Surprisingly, they are used
barely at all.

We developed a novel PHP CPG and SURFER to answer
whether developers use home-grown defenses. There are two
ways of defending against such attacks: Deny and allow list-
ing.

Manual Analysis: Deny Listing To implement a proper
deny list-style approach, DNS resolution and DNS pinning
are required. Otherwise, an attacker could either register a
new domain not on the denylist to attack a target with an
SSR or provide a short-lived DNS entry to perform a DNS
rebinding attack.

We did not encounter any DNS-based defenses. Since prop-
erly defending against SSRF attacks in a denylist scenario
requires DNS rebinding, we were surprised by the absence of
DNS requests. It is not entirely unexpected that DNS pinning
routines are missing since it is a complex technique, but we
find it noteworthy that no single DNS request call was found.

Manual Analysis: Allow Listing SSR abuses can also be
prevented using proper URL parsing and a complete allow list
(compare our threat model 3.3). Most applications (38) did
not validate the URL in any way, but 26 did so in an allow list
manner. However, since rarely any flow uses a proper URL
parser, and most flows don’t validate the arguably most impor-
tant part of the URL, the domain, allow-list-based defenses
do not seem to reflect the status quo as well. We could only
find two apps that do properly allow list-based defending.
Technically, prefixing user input with a qualified URL can
be interpreted as a type of allow listing. However, it cannot be

considered a deliberate countermeasure. Instead, it is a funda-
mental design choice to realize a specific functionality of the
application. Therefore, we argue that this is not a sufficient
indicator of SSRF awareness.

Developers We have established that there is prior work
available on the dire consequences of SSR abuses. But nobody
is using existing defense solutions nor properly deny list-
based defenses. We could only find two apps using proper
allow-list-based defenses. From this, we can only conclude
that SSRF is still not present enough in developers’ minds
and applications.

PHP: SSR by Accident? PHP is a language in which it
is easy to implement SSR functionality ‘by accident’. Many
functions that deal with local files can also request remote
resources. Most prominently, file_get_contents, but even
more obscure functions such as getimagesize can trigger
requests.

The implementation types is_file and opendir — both
PHP builtins — indicate that developers try to limit the SSR
sinks to their local features only. But both functions allow
FTP requests. Takeaway: We propose that APIs should be de-
signed so that SSR functionality has to be explicitly requested.
Otherwise, developers introduce unexpected SSR features or
have to implement checks to stop SSRs, introducing risk and
complexity.

GitHub as a Data Source We want to provide insights into
using GitHub as a data source for security research and sur-
veys to help future work. One interesting result of our manual
analysis is that many of our findings are in repositories that
are not real applications but hacking tools, such as web shells
or programs that are vulnerable by design, e.g., for CTF com-
petitions. It is important to disregard those when reasoning
about developer awareness since they do not reflect the status
quo of real applications and developer awareness. Researchers
must exclude these repositories when using GitHub as a data
source.

We also encountered archived repositories as well as aban-
doned projects (19). Although this is not necessarily a sign
of vulnerable applications, we expect that unsupported ap-
plications do not represent the current state of attacks and
defenses.

Case Study: Insufficient Domain Validation We encoun-
tered a vulnerability in LibreX during our work” that serves
as a suiting example for an insufficient attempt at protecting
against SSRF. The vulnerable code is shown in Figure 8.
The code defines a domain allowlist in line 3. It then at-
tempts to check the user input from line 1 against the allow

“https://github.com/hnhx/librex. We notified the developers of
the problem. The repository was deleted from GitHub.

list before passing it to the custom sink-wrapper request ()
in line 10. To do so, it first calls the userland function
get_root_domain. Thus, it is implementing D2: Domain
URL Validation.

However, the implementation of get_root_domain is de-
fective. The developers utilize a home-grown solution in-
stead of using a well-established URL parser, such as PHP’s
built-in parse_url (). It splits the provided URL using the
forward slash as the delimiter. The third element is reversed
and split again, this time at the dots. The second and first
elements of the resulting array are reversed and concate-
nated. For example, http://www.example.org is split into
["http:","", "www.example.org"]. The third element is
reversed to gro.elpmaxe and split ["gro", "elpmaxe"].
Then, the second and first elements are reversed and concate-
nated: example.org.

To bypass the allowlist, an attacker can append
?.example.org to an arbitrary scheme, port, and domain:
http://evil.com:22?example.org. Since the last step
only takes the first and second element in the reversed in-
put, the function returns example.org, which is accepted by
the allowlist. Thus, an attacker can control the scheme, do-
main, and port of the SSR request, making the application
vulnerable to A1l (port scanning, network scanning) and A4
Bridging Attacks.

// we simplified this snippet.
$url = $_REQUEST["url"];
Srequested_root_domain = get_root_domain (Surl);
$allowed_domains=["qwant.com", "wikimedia.org"];
if (in_array($requested_root_domain, $allowed_domains)) {
S$image = S$url;
$image_src = request ($image);
header ("Content-Type: image/png");
echo $image_src;
}
function get_root_domain ($url) {
$split_url = explode("/", S$url);
Sbase_url = $split_url([2];
$base_url_main_split = explode(".",
— strrev(Sbase_url));
Sroot_domain = strrev($base_url_main_split[1]
— . strrev(Sbase_url_main_split[0]);
return $root_domain;

Figure 8: Vulnerable code snippet of the metasearch engine.

Case Study: unsafe esc_url_raw We found a vulner-
able WordPress plugin that depends on the broken sanitizer
function esc_url_raw. Figure 9 shows its sanitization func-
tion, which uses some user input as a source. The input
is passed through sanitize_text_field from WordPress,
which has no special effect on URLs. The plugin only depends
onesc_url_raw as a sanitizer for SSR abuses. As established
in Section 3.4 esc_url_raw’s documentation promises that

https://github.com/hnhx/librex

its result is safe for HTTP requests, but this is not true since
it is not performing any SSR validation. This underlines the
importance of clear and correct documentation.

// We simplified this snippet.

function get_response(Surl) {
Sresult = wp_remote_get (esc_url_raw(Surl));
return Sresult;

Figure 9: Vulnerable sanitizer function of a WP plugin.

6.1 Limitations

While we aim at being complete, our approach contains limi-
tations:

Static Analysis Static analysis suffers from inherent limi-
tations that can lead to missed data flows due to programming
patterns that are inherently difficult, if not impossible, to re-
construct. These patterns are a well-known limitation of static
analysis that is under active research [e.g. 23, 24], and may
lead to missed data flows. Static analysis is also vulnerable to
false positives; however, as we manually verify each of our de-
tected flows, we eliminate this risk reliably. Additionally, our
static analysis failed for very complex applications as CPG
creation can experience exponential growth, which may lead
to time-outs or memory exhaustion depending on the struc-
ture of the application, limiting our data set (ref. Figure 6).
Finally, we had to decide on one of the different and only
partially compatible PHP major versions against which to
implement our CPG creation. We decided on the, at the time,
most recent PHP 8.2. This will inevitably lead to projects with
legacy code that are only partially translatable into bytecode,
with the files containing the legacy code left out. Using static
analysis potentially reduces the overall amount of analyzed
and reported SSRF-related data points.

Missed Second Order Vulnerabilities We do not con-
sider second-order data flows when performing our manual
analysis, as we filter out any flow without attacker control.
Second-order vulnerabilities are notoriously challenging to
detect [13] and, given the typical usage pattern of SSR, are of
minor relevance to our overarching research question.

Focus on Common Sinks and Exploits We use popular
HTTP sinks with protocol-agnostic exploitation patterns as
our starting point for the static analysis. This excludes more
exotic attacks involving technically complex and situational
exploitations, e.g., leveraging open_dir via ftp. While those
exploits are technically feasible, they do not represent this
research’s common and focused exploit scenario and should
be considered for future work.

6.2 PHPJoern

We have discussed PHPJoern’s shortcomings we identified be-
fore conducting our study (4.1.1). We, a posteriori, evaluated
if they would have impacted our results if we had used PHPJo-
ern. Since we mitigate false positives through our subsequent
manual review, we focus on the version mismatch.

To estimate the impact of errors due to version mismatches,
we conducted an experiment: Using PHP’s syntax check fea-
ture, we measured the PHP 7.1 compatibility of our dataset.
We found 4.990 repositories that use modern PHPJoern-
incompatible features, i.e., they pass PHP 8.2’s syntax check
but not PHP 7.1’s. We manually cross-checked these with our
vulnerable flows and identified one vulnerable code path miss-
ing from PHPJoern’s CPG. Therefore, we would be unable to
find it if we based SURFER on PHPJoern instead of our new
CPG generator. The breaking feature used by the vulnerable
code is DNF Type Declarations.

6.3 Research Questions Answered

We will now answer our research questions from Section 2.3
and summarize our learnings.

How Popular are SSRs? 49.6 % of the repositories in our
dataset contained at least one SSR sink. Since this number
is string-search-based, it is a rough approximation. Filtering
results for only those with user input in the data flow to the
SSR sink, we get 141. This shows that application developers
are using SSR sinks mostly with static targets.

Current State of SSRF defenses (RQ1) From an aca-
demic and documentation standpoint, SSR abuses are well
documented. The literature provides enough sources on de-
fenses, and OWASP is providing cheat sheets. The common
framework Symfony implemented a safer HTTP client, and
there are drop-in replacements for safer curl usage in PHP.
WordPress attempts to provide a defense but is flawed and
vulnerable to DNS rebinding. Other frameworks supporting
SSR lack defense capabilities and do not discuss the risks of
SSRs in their documentation.

Web developers are not using readily available defenses
(RQ2) We discussed the availability of ready-to-be-used safer
HTTP clients that defend against certain SSR abuses in Sec-
tion 3.4. However, only a negligible amount of PHP applica-
tions on GitHub are using them.

Applications are lacking custom defenses (RQ3) Our
static analysis results, in combination with an in-depth manual
analysis, showed that proper defense and mitigation attempts
are rare. No application is equipped with DNS validation,
which is essential for a safe and proper deny-list-based de-
fense against SSR abuses. Only two applications properly
used allow listing.

State of SSR vulnerabilities in applications (RQ4) Con-
sidering that open-source web application developers are not
using existing SSR defenses and are not implementing proper

SSR defenses, we conclude that SSR awareness has not ar-
rived in the mainstream of application developers.

7 Related Work

SSR Studies Previous academic work introduced dynamic
scanners to detect vulnerable SSR, Pellegrino et al. [32] pro-
posed a black-box testing tool and scanned 68 services. We
leverage the benefits of static code analysis, enabling us to
cover all possible code paths without any input except the ap-
plication itself. This allows us to conduct a large-scale study
on 27,078 applications. Jabiyev et al. [21] proposed defenses
against SSRF and benchmarked them against known SSRF
vulnerabilities. Musch et al. [28] studied the prevalence and
security implications of Server-Side-Browsers as SSR clients.
Sahin et al. [33] have conducted a CTF experiment to study
developers’ awareness of different web attack types. SSRF
was exploited the least, showing that it is still an unknown
vulnerability class. Previous work focused on detecting SSR
vulnerabilities or defending against them — we are the first
to evaluate existing defenses in the wild.

SSR Systematization Pellegrino et al. [32] introduced a
classification of SSRs along the axes of Flaw, Behavior, Con-
trol, and Target. Additionally, they presented some mitigation
techniques they encountered.

In contrast, our systematization, presented in section 3, in-
cludes defenses as a first-class citizen. Consequently, attacks
are explicitly mapped to suitable defenses. They are classified
as full, partial, or allow-list only protections. Additionally, we
systematized known defense evasion techniques and linked
them with our previous efforts.

Furthermore, our systematization distinguishes between
allow listing and deny list cases, which Pellegrino et al. did not
cover. However, this differentiation is essential to a complete
understanding of SSR defenses. Some defenses are sufficient
in the allow list case, e.g., complete URL validation is an
adequate host validation. At the same time, more technical
effort and knowledge are required in the deny list case, i.e.,
DNS Rebinding protection is needed.

Additionally, while our systematization contains the attacks
from Pellegrino et al., it presents a current and updated picture.
It includes recent developments; for example, it encompasses
the new attack surface of browsers as HTTP clients [28].
Additionally, we split the Probe class into the more suited
Port scan and Network scan categories to better reflect the
impact of different defense techniques.

Therefore, our defense-encompassing systematization can
be used by both researchers and practitioners. Security re-
searchers can easily classify their potential findings alongside
existing mitigations using our systematization. Similarly, de-
velopers can leverage it to check if their implementation is
vulnerable and are provided with better options.

PHP Static Analysis Previous work covered information
flow and taint-style vulnerabilities in PHP applications.
Huang et al. [19] detected vulnerabilities via information
flow analysis in PHP applications and were the first to do
so. Jovanovic et al. [22] proposed a static taint-flow analysis
for PHP applications. Kassar et al. [23, 24] are working on
pushing the coverage of PHP static analysis tools but over-
look SSRF sinks and vulnerabilities in their work. Backes
et al. [9] were the first to leverage code property graphs to
analyze PHP applications. Alhuzali et al. [6] combined it with
dynamic analysis to generate exploits more precisely. Shezan
et al. [35] augmented it with cross-language capabilities to
search for GDPR violations. Our novel PHP code property
graph converter, written against the modern CPG standard
[48], works on the CFG provided by PHP itself, making it
more reliable than the one proposed by Backes et al. [9].

8 Conclusion

SSRF is a complex and multifaceted vulnerability class, and
our survey of the current state of the art shows that developers
must consider multiple attack vectors. However, the exper-
iments in this paper reveal that developers do not properly
defend against SSRF:

i) Our analysis of popular PHP frameworks and SSR li-
braries shows that even if SSR capabilities are offered, de-
fenses in any form are commonly missing or defective. In
particular, dedicated defenses against SSRF are either broken
(WordPress) or are simply not used by the vast majority of
PHP applications on GitHub (Symfony, SafeCurl, etc.) — Only
four applications are using existing safe countermeasures, as
shown by our usage study.

ii) As dedicated defensive measures are not used, we
investigated if homegrown countermeasures are implemented
instead. For this purpose, we examined 27,078 software
projects sourced from GitHub using our CPG-based tool
SURFER and a subsequent rigorous manual analysis. Our
investigation into the resulting flows and deployed defenses
revealed that only two applications employ their own safe
allow-list defense. Furthermore, we did not find any secure
deny-list defense since protection against DNS rebinding was
absent in all cases.

In a somber conclusion, our results show that, while being
comparatively infrequent, SSRF is widespread in the applica-
ble subset of software projects: Almost all applications that
might be susceptible to SSRF due to their application logic
(i.e., they utilize at least one functionality that requires the
retrieval of external HTTP resources based on user input) are
indeed vulnerable to such attacks. Hence, our results suggest
that developers either are unaware of SSRF’s dangers or are
unwilling/unable to implement effective defenses.

Acknowledgments

We are thankful for the valuable feedback of our anonymous
reviewers and shepherd. This work has received funding from
the European Union’s Horizon 2020 research and innova-
tion programme under project TESTABLE, grant agreement
No 101019206. Additionally, it was funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Founda-
tion) under Germany’s Excellence Strategy — EXC 2092
CASA —390781972.

Availability

Our tooling is available as open-source software at https:
//github.com/SSRF-vs-Developers.

Disclosure

We contacted the developers of affected repositories that were
not deprecated or archived. We preferred the contact informa-
tion from security policies to disclose the issues responsibly.
If no security policy was present, we filed issues asking for
their preferred way of disclosure or tried to contact the devel-
opers via email.

References

[1] Cve-2016-4029. Online https://www.cve.org/CVER
ecord?id=CVE-2016-4029, 2016. visited 2023-06-02.

[2] Cve-2021-21973. Online https://www.cve.org/CV
ERecord?i1d=CVE-2021-21973, 2021. visited 2023-
06-02.

[3] Cve-2021-26855. Online https://www.cve.org/CV
ERecord?i1d=CVE-2021-26855, 2021.

[4] NVD - CVE-2023-43654. Online https://nvd.nist
.gov/vuln/detail/CVE-2023-43654, 2023.

[5] Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman.
Compilerbau, Teil 2, Compilerbau. Oldenbourg Wis-
senschaftsverlag, 2016.

[6] Abeer Alhuzali, Rigel Gjomemo, Birhanu Eshete, and
V.N. Venkatakrishnan. NAVEX: Precise and scalable
exploit generation for dynamic web applications. In
27th USENIX Security Symposium (USENIX Security
18), pages 377-392. USENIX Association, August 2018.
ISBN 978-1-939133-04-5. URL https://www.usen
ix.org/conference/usenixsecurityl8/present
ation/alhuzali.

[71 Amazon Web Services, Inc. Instance metadata and user
data - amazon elastic compute cloud. Online https:

9

—

[10]

(11]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

//docs.aws.amazon.com/AWSEC2/latest/UserGu
ide/ec2-instance-metadata.html, March 2022.

ArrOway. SSRF Cheat Sheet & Bypass Techniques .
Online https://highon.coffee/blog/ssrf-cheat
-sheet/, 2021.

Michael Backes, Konrad Rieck, Malte Skoruppa, Ben
Stock, and Fabian Yamaguchi. Efficient and flexible
discovery of php application vulnerabilities. In 2017
IEEE European Symposium on Security and Privacy
(EuroS&P), pages 334-349. IEEE, 2017.

Jérémy Benoist. Server-Side Request Forgery (SSRF)
protection plugin for HTTPlug. Online https://gith
ub.com/j0k3r/httplug-ssrf-plugin, July 2022.

Albert Danial. cloc: v1.81. Online https://github.c
om/AlDanial/cloc, 2019.

DigitalOcean, LLC. How to access droplet metadata.
Online https://docs.digitalocean.com/produc
ts/droplets/how-to/retrieve-droplet-metad
ata, March 2022.

Benjamin Eriksson, Giancarlo Pellegrino, and Andrei
Sabelfeld. Black widow: Blackbox data-driven web
scanning. In 42nd IEEE Symposium on Security and
Privacy, SP 2021, San Francisco, CA, USA, 24-27 May
2021, pages 1125-1142. IEEE, 2021. doi: 10.1109/SP
40001.2021.00022. URL https://doi.org/10.110
9/SP40001.2021.00022.

finlte. SafeCurl: SSRF Protection, and a "Capture the
Bitcoins". Online https://whitton.io/articles/
safecurl-ssrf-protection-and-a-capture-the
-bitcoins/, May 2014.

Andrew Gallant. ripgrep (rg). Online https://gith
ub.com/BurntSushi/ripgrep, 2021.

Google. Subscribe to someone’s Google Calendar -
Computer - Google Calendar Help. Online https:
//support.google.com/calendar/answer/37100,
2023.

Josh Grunzweig, Matthew Meltzer, Sean Koessel,
Steven Adair, and Thomas Lancaster. Operation ex-
change marauder: Active exploitation of multiple zero-
day microsoft exchange vulnerabilities. Online https:
//www.volexity.com/blog/2021/03/02/active-e
xploitation-of-microsoft-exchange-zero-day
-vulnerabilities/, 2021. visited 2023-06-02.

Tarunkant Gupta. Blog on Gopherus Tool. Online
https://tarunkant.github.i0/2018/08/14/201
8-08-14-blog-on-gopherus/index.html, 2018.

https://github.com/SSRF-vs-Developers
https://github.com/SSRF-vs-Developers
https://www.cve.org/CVERecord?id=CVE-2016-4029
https://www.cve.org/CVERecord?id=CVE-2016-4029
https://www.cve.org/CVERecord?id=CVE-2021-21973
https://www.cve.org/CVERecord?id=CVE-2021-21973
https://www.cve.org/CVERecord?id=CVE-2021-26855
https://www.cve.org/CVERecord?id=CVE-2021-26855
https://nvd.nist.gov/vuln/detail/CVE-2023-43654
https://nvd.nist.gov/vuln/detail/CVE-2023-43654
https://www.usenix.org/conference/usenixsecurity18/presentation/alhuzali
https://www.usenix.org/conference/usenixsecurity18/presentation/alhuzali
https://www.usenix.org/conference/usenixsecurity18/presentation/alhuzali
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
https://highon.coffee/blog/ssrf-cheat-sheet/
https://highon.coffee/blog/ssrf-cheat-sheet/
https://github.com/j0k3r/httplug-ssrf-plugin
https://github.com/j0k3r/httplug-ssrf-plugin
https://github.com/AlDanial/cloc
https://github.com/AlDanial/cloc
https://docs.digitalocean.com/products/droplets/how-to/retrieve-droplet-metadata
https://docs.digitalocean.com/products/droplets/how-to/retrieve-droplet-metadata
https://docs.digitalocean.com/products/droplets/how-to/retrieve-droplet-metadata
https://doi.org/10.1109/SP40001.2021.00022
https://doi.org/10.1109/SP40001.2021.00022
https://whitton.io/articles/safecurl-ssrf-protection-and-a-capture-the-bitcoins/
https://whitton.io/articles/safecurl-ssrf-protection-and-a-capture-the-bitcoins/
https://whitton.io/articles/safecurl-ssrf-protection-and-a-capture-the-bitcoins/
https://github.com/BurntSushi/ripgrep
https://github.com/BurntSushi/ripgrep
https://support.google.com/calendar/answer/37100
https://support.google.com/calendar/answer/37100
https://www.volexity.com/blog/2021/03/02/active-exploitation-of-microsoft-exchange-zero-day-vulnerabilities/
https://www.volexity.com/blog/2021/03/02/active-exploitation-of-microsoft-exchange-zero-day-vulnerabilities/
https://www.volexity.com/blog/2021/03/02/active-exploitation-of-microsoft-exchange-zero-day-vulnerabilities/
https://www.volexity.com/blog/2021/03/02/active-exploitation-of-microsoft-exchange-zero-day-vulnerabilities/
https://tarunkant.github.io/2018/08/14/2018-08-14-blog-on-gopherus/index.html
https://tarunkant.github.io/2018/08/14/2018-08-14-blog-on-gopherus/index.html

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Yao-Wen Huang, Fang Yu, Christian Hang, Chung-Hung
Tsai, Der-Tsai Lee, and Sy-Yen Kuo. Securing web ap-
plication code by static analysis and runtime protection.
In Proceedings of the 13th international conference on
World Wide Web, WWW 2004, WWW ’04, pages 40—
52. Association for Computing Machinery, 2004. doi:
10.1145/988672.988679.

IncludeSec team. Introducing: SafeURL — A set of
SSRF Protection Libraries. Online https://blog.1
ncludesecurity.com/2016/08/introducing-saf
eurl-a-set-of-ssrf-protection-libraries/,

2016.

Bahruz Jabiyev, Omid Mirzaei, Amin Kharraz, and En-
gin Kirda. Preventing server-side request forgery at-
tacks. In Proceedings of the 36th Annual ACM Sym-
posium on Applied Computing, SAC 21, pages 1626—
1635. Association for Computing Machinery, 2021. doi:
10.1145/3412841.3442036.

Nenad Jovanovic, Christopher Kruegel, and Engin Kirda.
Static analysis for detecting taint-style vulnerabilities in
web applications. Journal of Computer Security, 18(5):
861-907, August 2010. doi: http://dx.doi.org/10.3233/J
CS-2009-0385.

Feras Al Kassar, Giulia Clerici, Luca Compagna, Davide
Balzarotti, and Fabian Yamaguchi. Testability tarpits:
the impact of code patterns on the security testing of web
applications. In 29th Annual Network and Distributed
System Security Symposium, NDSS 2022, San Diego,
California, USA, April 24-28, 2022. The Internet Society,
2022. URL https://www.ndss-symposium.org/n
dss-paper/auto-draft-206/.

Feras Al Kassar, Luca Compagna, and Davide Balzarotti.
WHIP: improving static vulnerability detection in
web application by forcing tools to collaborate. In
Joseph A. Calandrino and Carmela Troncoso, editors,
32nd USENIX Security Symposium, USENIX Security
2023, Anaheim, CA, USA, August 9-11, 2023. USENIX
Association, 2023. URL https://www.usenix.org
/conference/usenixsecurity23/presentation/
al-kassar.

Vickie Li. Bypassing SSRF Protection. Online https:
//vickieli.medium.com/bypassing-ssrf-prote
ction-elllae70727b, 2019. visited 2023-06-02.

Colm MacCarthaigh. Add defense in depth against open
firewalls, reverse proxies, and SSRF vulnerabilities with
enhancements to the EC2 Instance Metadata Service.
Online https://aws.amazon.com/de/blogs/secu
rity/defense-in-depth-open-firewalls-rever
se-proxies-ssrf-vulnerabilities-ec2-insta
nce-metadata-service/, 2019.

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

mozilla.org contributors. Content-Disposition - HTTP
| MDN. Online https://developer.mozilla.org/
en-US/docs/Web/HTTP/Headers/Content-Dispo
sition, 2023.

Marius Musch, Robin Kirchner, Max Boll, and Martin
Johns. Server-Side Browsers: Exploring the Web’s Hid-
den Attack Surface. In Proc. of the 17th ACM Asia
Conference on Computer and Communications Security

(AsiaCCS’22), May 2022.

Ivan Novikov. SSRF bible. Cheatsheet. Online https:
//cheatsheetseries.owasp.org/assets/Server
_Side_Request_Forgery_Prevention_Cheat_She
et_SSRF_Bible.pdf, Jan 2017.

OWASP Contributors. Server Side Request Forgery
Prevention - OWASP Cheat Sheet Series. Online https:
//cheatsheetseries.owasp.org/cheatsheets/S
erver_Side_Request_Forgery_Prevention_Chea
t_Sheet.html, 2022.

OWASP Top 10 team. A10:2021 — server-side request
forgery (SSRF). Online https://owasp.org/Topl0/
A10_2021-Server-Side_Request_Forgery_ (SSRF
) /, September 2021.

Giancarlo Pellegrino, Onur Catakoglu, Davide
Balzarotti, and Christian Rossow. Uses and abuses of
server-side requests. In Research in Attacks, Intrusions,
and Defenses - 18th International Symposium, RAID
2016, January 2016.

Merve Sahin, Tolga Unlii, Cédric Hébert, Lynsay A.
Shepherd, Natalie Coull, and Colin Mc Lean. Measur-
ing Developers’ Web Security Awareness from Attack
and Defense Perspectives. In 2022 IEEE Security and
Privacy Workshops (SPW), pages 31-43, 2022. doi:
10.1109/SPW54247.2022.9833858.

sbani. New Option ‘pin_base_uri‘ to Prevent Potential
SSREF - Issue #2859 - guzzle/guzzle. Online https://
github.com/qguzzle/guzzle/issues/2859, 2021.

Faysal Hossain Shezan, Zihao Su, Mingqing Kang,
Nicholas Phair, Patrick William Thomas, Michelangelo
van Dam, Yinzhi Cao, and Yuan Tian. CHKPLUG:
Checking GDPR Compliance of WordPress Plugins via
Cross-language Code Property Graph. In NDSS, 2023.

Giada Stivala and Giancarlo Pellegrino. Deceptive pre-
views: A study of the link preview trustworthiness in so-
cial platforms. In 27th Annual Network and Distributed
System Security symposium, February 2020. URL
https://publications.cispa.saarland/3029/.

Symfony. HTTP Client (Symfony Docs). Online https:
//symfony.com/doc/current/http_client.html,
2023.

https://blog.includesecurity.com/2016/08/introducing-safeurl-a-set-of-ssrf-protection-libraries/
https://blog.includesecurity.com/2016/08/introducing-safeurl-a-set-of-ssrf-protection-libraries/
https://blog.includesecurity.com/2016/08/introducing-safeurl-a-set-of-ssrf-protection-libraries/
https://www.ndss-symposium.org/ndss-paper/auto-draft-206/
https://www.ndss-symposium.org/ndss-paper/auto-draft-206/
https://www.usenix.org/conference/usenixsecurity23/presentation/al-kassar
https://www.usenix.org/conference/usenixsecurity23/presentation/al-kassar
https://www.usenix.org/conference/usenixsecurity23/presentation/al-kassar
https://vickieli.medium.com/bypassing-ssrf-protection-e111ae70727b
https://vickieli.medium.com/bypassing-ssrf-protection-e111ae70727b
https://vickieli.medium.com/bypassing-ssrf-protection-e111ae70727b
https://aws.amazon.com/de/blogs/security/defense-in-depth-open-firewalls-reverse-proxies-ssrf-vulnerabilities-ec2-instance-metadata-service/
https://aws.amazon.com/de/blogs/security/defense-in-depth-open-firewalls-reverse-proxies-ssrf-vulnerabilities-ec2-instance-metadata-service/
https://aws.amazon.com/de/blogs/security/defense-in-depth-open-firewalls-reverse-proxies-ssrf-vulnerabilities-ec2-instance-metadata-service/
https://aws.amazon.com/de/blogs/security/defense-in-depth-open-firewalls-reverse-proxies-ssrf-vulnerabilities-ec2-instance-metadata-service/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Disposition
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Disposition
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Disposition
https://cheatsheetseries.owasp.org/assets/Server_Side_Request_Forgery_Prevention_Cheat_Sheet_SSRF_Bible.pdf
https://cheatsheetseries.owasp.org/assets/Server_Side_Request_Forgery_Prevention_Cheat_Sheet_SSRF_Bible.pdf
https://cheatsheetseries.owasp.org/assets/Server_Side_Request_Forgery_Prevention_Cheat_Sheet_SSRF_Bible.pdf
https://cheatsheetseries.owasp.org/assets/Server_Side_Request_Forgery_Prevention_Cheat_Sheet_SSRF_Bible.pdf
https://cheatsheetseries.owasp.org/cheatsheets/Server_Side_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Server_Side_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Server_Side_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Server_Side_Request_Forgery_Prevention_Cheat_Sheet.html
https://owasp.org/Top10/A10_2021-Server-Side_Request_Forgery_(SSRF)/
https://owasp.org/Top10/A10_2021-Server-Side_Request_Forgery_(SSRF)/
https://owasp.org/Top10/A10_2021-Server-Side_Request_Forgery_(SSRF)/
https://github.com/guzzle/guzzle/issues/2859
https://github.com/guzzle/guzzle/issues/2859
https://publications.cispa.saarland/3029/
https://symfony.com/doc/current/http_client.html
https://symfony.com/doc/current/http_client.html

[38] Symfony. New in Symfony 5.1: Server-side request
forgery protection (Symfony Blog). Online https:
//symfony.com/blog/new-in-symfony-5-1-ser
ver-side-request-forgery-protection, 2023.

[39] Laurence Tennant. Mitigating SSRF in 2023. Online
https://blog.includesecurity.com/2023/03/m
itigating-ssrf-in-2023/, 2023.

[40] The MITRE Corporation. 2021 CWE top 25 most dan-
gerous software weaknesses. Online https://cwe.mi
tre.org/data/definitions/1387.html, 2021.

[41] The PHP Group. PHP: Deprecated Features - Manual.
Online https://www.php.net/manual/en/migrat
ion80.deprecated.php#migration80.deprecate
d.libxml, 2020.

[42] The PHP Group. PHP: cURL. Online https://www.

php.net/manual/en/book.curl.php, 2024.

[43] The PHP HTTP group. HTTPlug. Online https:
//httplug.io/, 2023.

[44] Cheng-Da Tsai. A New Era of SSRF - Exploiting URL
Parser in Trending Programming Languages! Online
https://www.blackhat.com/docs/us-17/thursd
ay/us-17-Tsai-A-New-Era-0f-SSRF-Exploitin
g-URL-Parser-In-Trending-Programming-Langu
ages.pdf, 2017.

[45] WordPress. esc_url_raw() | Function, 2016. URL http
s://developer.wordpress.org/reference/func
tions/esc_url_raw/.

[46] WordPress. wp_safe_remote_get() | Function. Online
https://developer.wordpress.org/reference/
functions/wp_safe_remote_get/, 2017.

[47] Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad
Rieck. Modeling and discovering vulnerabilities with
code property graphs. In Proceedings of the 2014 IEEE
Symposium on Security and Privacy, pages 590-604.
IEEE Computer Society, 2014. doi: 10.1109/SP.2014.
44,

[48] Fabian Yamaguchi, Markus Lottmann, Niko Schmidt,
Michael Pollmeier, Suchakra Sharma, and Claudiu-Vlad
Ursache. Github code property graph. Online https:
//github.com/ShiftLeftSecurity/codepropert
ygraph, 2023.

[49] Amar Zlojic. Server Side Request Forgery (SSRF)
Attacks & How to Prevent Them, 04 2022. https:
//brightsec.com/blog/ssrf-server-side-req
uest-forgery/.

Appendix
8.1 List of Supported PHP SSR sinks

We compiled PHP functions that can trigger HTTP requests in
default configurations. We included the popular ‘curl’ exten-
sion. We amended the list with request sinks from WordPress,
since it is the most-used PHP framework. Please note that
get_headers performs a GET and not a HEAD request.

We chose not to include sinks in this work that re-
quire a configuration change to trigger an SSR, e.g., if
allow_url_include is set to true, the include and require
functions of PHP are able to trigger network requests. We
include file_get_contents due to a similar reasoning. It
requires allow_url_fopen to be set to true — which is the
default.

However, since our methodology is general, the list can be
easily modified to broaden the scope of sinks.

e file_get_contents

e curl_init

* curl_set_opt

* getimagesize

* get_headers

* wp_http::get

® requests::get

* wp_remote_request

* wp_remote_get

* wp_remote_post

* wp_remote_head

* wp_safe_remote_request
* wp_safe_remote_get
* wp_safe_remote_post

* wp_safe_remote_head

8.2 Findings

Table 7 lists the apps we identified as vulnerable. We con-
tacted the developers if the repository was not archived or
explicitly deprecated.

https://symfony.com/blog/new-in-symfony-5-1-server-side-request-forgery-protection
https://symfony.com/blog/new-in-symfony-5-1-server-side-request-forgery-protection
https://symfony.com/blog/new-in-symfony-5-1-server-side-request-forgery-protection
https://blog.includesecurity.com/2023/03/mitigating-ssrf-in-2023/
https://blog.includesecurity.com/2023/03/mitigating-ssrf-in-2023/
https://cwe.mitre.org/data/definitions/1387.html
https://cwe.mitre.org/data/definitions/1387.html
https://www.php.net/manual/en/migration80.deprecated.php#migration80.deprecated.libxml
https://www.php.net/manual/en/migration80.deprecated.php#migration80.deprecated.libxml
https://www.php.net/manual/en/migration80.deprecated.php#migration80.deprecated.libxml
https://www.php.net/manual/en/book.curl.php
https://www.php.net/manual/en/book.curl.php
https://httplug.io/
https://httplug.io/
https://www.blackhat.com/docs/us-17/thursday/us-17-Tsai-A-New-Era-Of-SSRF-Exploiting-URL-Parser-In-Trending-Programming-Languages.pdf
https://www.blackhat.com/docs/us-17/thursday/us-17-Tsai-A-New-Era-Of-SSRF-Exploiting-URL-Parser-In-Trending-Programming-Languages.pdf
https://www.blackhat.com/docs/us-17/thursday/us-17-Tsai-A-New-Era-Of-SSRF-Exploiting-URL-Parser-In-Trending-Programming-Languages.pdf
https://www.blackhat.com/docs/us-17/thursday/us-17-Tsai-A-New-Era-Of-SSRF-Exploiting-URL-Parser-In-Trending-Programming-Languages.pdf
https://developer.wordpress.org/reference/functions/esc_url_raw/
https://developer.wordpress.org/reference/functions/esc_url_raw/
https://developer.wordpress.org/reference/functions/esc_url_raw/
https://developer.wordpress.org/reference/functions/wp_safe_remote_get/
https://developer.wordpress.org/reference/functions/wp_safe_remote_get/
https://github.com/ShiftLeftSecurity/codepropertygraph
https://github.com/ShiftLeftSecurity/codepropertygraph
https://github.com/ShiftLeftSecurity/codepropertygraph
https://brightsec.com/blog/ssrf-server-side-request-forgery/
https://brightsec.com/blog/ssrf-server-side-request-forgery/
https://brightsec.com/blog/ssrf-server-side-request-forgery/

Name Stars Exploitability =~ Note
10up/safe-svg 193 [
AShleyRich/delightful-downloads 27 ()
akirk/friends 68 o
amzik/officemanage 27 [
Arsenal21/all-in-one-wordpress-security 40 o T
bigbignerd/WxCrawler 31 ©
blindsidenetworks/wordpress-plugin_bigbluebutton 26 ()
captn3m0/jqaas 32 ©
chyrp/chyrp 203 [J
Codiad/Codiad 2823 > T
codingeverybody/makewebapp 33 ©
csev/djde 90 [
Cvolton/GMDprivateServer 313 [)
cw1997/Tieba-Posting-Frequency 31 ©
d3y4n/instagraph 326 ©
dave-p/TVHadmin 26 [
diegolamonica/EUCookieLaw 50 ©
DSJAS/DSJAS 42)
factmaven/xml-to-json 48 o
Feathur/Feathur 72 [
fingerQin/Yaf-Server-Admin 51 ©
Frecuencio/sqlbuddy-php7 40 ©
friend-nicen/nicen-localize-image 63 [
GeSHi/geshi-1.0 162 >
greenido/backbone-bira 26 [)
hnhx/librex 652 © X
iandevlin/resimagecrop 41 [
inclusive-design/AChecker 68 (] T
jadijadi/techninjatheme 34 o
kodejuice/localGoogoo 41 (]
Ifiore/upld 42 (]
Licoy/wordpress-theme-puock 1740 ()
LyLme/lylme_spage 267 ©
marekrei/encode-explorer 221)
markjaquith/WordPress-Plugin-Readme-Parser 42 (]
mojeda/QuickGallery 42 [
mokecc/VideoUrlParser 30 (]
MonstaApps/Monsta-FTP 129 © ¥
mpeshev/DX-Plugin-Base 115 ©
mwt/apfollow 34 [
nangge/webchat-robot 41 ()
naofode/naofo.de 100 (]
nbhr/php-reverse-proxy 81 ©
nk932714/yify-movies-php 26 o
norbusan/piwigopress 426 (]
onigetoc/m3u8-PHP-Parser 55 ©
OpenGamePanel/OGP-Agent-Linux 86 ©
PhiRhythmus/Tanx 134 o
photonstorm/AS3toTypeScript 70 ©
PHPAuth/PHPAuth 872 [
phucvo0709/Clone-Google-Search-Engine 33 [
plidezus/aimozhen 39 [
qakcn/qchan 207 o
quicksketch/timezonepicker 53 ©
rmorse/Open-Manager 61 () ¥
$3131212/allendisk 37) T
segler-alex/radiobrowser-api 71 [¥
shiflett/unveil 28 (]
Simsso/Online-Tools 54 ©
sixty-nine/PHP_Word_Cloud 39 () T
splitbrain/php-epub-meta 58 ©
sul8/Stitch 161 [))
uksb/vqgen 48 ©
vedees/wems 250 ©
vito/chyrp 232 © ¥
‘WolfieZero/Markdown-Viewer-PHP 50 [))
wp-sync-db/wp-sync-db-media-files 520 o
wujunze/onlineDisk_search 26 [)
xb2016/kratos-pjax 949 (] ¥
Average stars 190,55
Median stars 54

Table 7: Applications we identified as vulnerable. ©: Repo contained a trivially exploitable flow. ®: Repo contained a non-trivial
exploitable flow. @: Repo contained both trivial and non-trivial flows. §: Deprecated or archived, X: Repo was deleted.

https://www.github.com/10up/safe-svg
https://www.github.com/A5hleyRich/delightful-downloads
https://www.github.com/akirk/friends
https://www.github.com/amzik/officemanage
https://www.github.com/Arsenal21/all-in-one-wordpress-security
https://www.github.com/bigbignerd/WxCrawler
https://www.github.com/blindsidenetworks/wordpress\protect \discretionary {\char \hyphenchar \font }{}{}plugin_bigbluebutton
https://www.github.com/captn3m0/jqaas
https://www.github.com/chyrp/chyrp
https://www.github.com/Codiad/Codiad
https://www.github.com/codingeverybody/makewebapp
https://www.github.com/csev/dj4e
https://www.github.com/Cvolton/GMDprivateServer
https://www.github.com/cw1997/Tieba-Posting-Frequency
https://www.github.com/d3y4n/instagraph
https://www.github.com/dave-p/TVHadmin
https://www.github.com/diegolamonica/EUCookieLaw
https://www.github.com/DSJAS/DSJAS
https://www.github.com/factmaven/xml-to-json
https://www.github.com/Feathur/Feathur
https://www.github.com/fingerQin/Yaf-Server-Admin
https://www.github.com/Frecuencio/sqlbuddy-php7
https://www.github.com/friend-nicen/nicen-localize-image
https://www.github.com/GeSHi/geshi-1.0
https://www.github.com/greenido/backbone-bira
https://www.github.com/hnhx/librex
https://www.github.com/iandevlin/resimagecrop
https://www.github.com/inclusive-design/AChecker
https://www.github.com/jadijadi/techninjatheme
https://www.github.com/kodejuice/localGoogoo
https://www.github.com/lfiore/upld
https://www.github.com/Licoy/wordpress-theme-puock
https://www.github.com/LyLme/lylme_spage
https://www.github.com/marekrei/encode-explorer
https://www.github.com/markjaquith/WordPress-Plugin-Readme-Parser
https://www.github.com/mojeda/QuickGallery
https://www.github.com/mokecc/VideoUrlParser
https://www.github.com/MonstaApps/Monsta-FTP
https://www.github.com/mpeshev/DX-Plugin-Base
https://www.github.com/mwt/apfollow
https://www.github.com/nangge/webchat-robot
https://www.github.com/naofode/naofo.de
https://www.github.com/nbhr/php-reverse-proxy
https://www.github.com/nk932714/yify-movies-php
https://www.github.com/norbusan/piwigopress
https://www.github.com/onigetoc/m3u8-PHP-Parser
https://www.github.com/OpenGamePanel/OGP-Agent-Linux
https://www.github.com/PhiRhythmus/Tanx
https://www.github.com/photonstorm/AS3toTypeScript
https://www.github.com/PHPAuth/PHPAuth
https://www.github.com/phucvo0709/Clone-Google-Search-Engine
https://www.github.com/plidezus/aimozhen
https://www.github.com/qakcn/qchan
https://www.github.com/quicksketch/timezonepicker
https://www.github.com/rmorse/Open-Manager
https://www.github.com/s3131212/allendisk
https://www.github.com/segler-alex/radiobrowser-api
https://www.github.com/shiflett/unveil
https://www.github.com/Simsso/Online-Tools
https://www.github.com/sixty-nine/PHP_Word_Cloud
https://www.github.com/splitbrain/php-epub-meta
https://www.github.com/su18/Stitch
https://www.github.com/uksb/vqgen
https://www.github.com/vedees/wcms
https://www.github.com/vito/chyrp
https://www.github.com/WolfieZero/Markdown-Viewer-PHP
https://www.github.com/wp-sync-db/wp-sync-db-media-files
https://www.github.com/wujunze/onlineDisk_search
https://www.github.com/xb2016/kratos-pjax

	Introduction
	A Primer on SSRF
	Server-Side Requests
	SSRF: Server-Side Requests Going Rogue
	Research Questions

	Survey Of Attacks and Defenses
	Attacks
	Defending Against SSRF
	Further Defenses and Threat Model
	Existing SSRF Defense Implementations
	Usage Study

	Identifying SSRF Vulnerable Code
	Automatic Static Analysis
	PHP Code Property Graphs
	Data Flow Analysis
	Surfer – Detecting SSR(F) with Program Slicing

	Manual Investigation of Candidates
	Detailed Analysis

	Results
	Data Set
	Applying Surfer
	Manual Analysis

	Discussion
	Limitations
	PHPJoern
	Research Questions Answered

	Related Work
	Conclusion
	List of Supported PHP SSR sinks
	Findings

