
SoK: State of the Krawlers – Evaluating the Effectiveness of
Crawling Algorithms for Web Security Measurements

Aleksei Stafeev
CISPA Helmholtz Center
for Information Security

Giancarlo Pellegrino
CISPA Helmholtz Center
for Information Security

Abstract
Web crawlers are tools widely used in web security mea-

surements whose performance and impact have been limitedly
studied so far. In this paper, we bridge this gap. Starting from
the past 12 years of the top security, web measurement, and
software engineering literature, we categorize and decompose
in building blocks crawling techniques and methodologic
choices. We then reimplement and patch crawling techniques
and integrate them into Arachnarium, a framework for com-
parative evaluations, which we use to run one of the most
comprehensive experimental evaluations against nine real and
two benchmark web applications and top 10K CrUX websites
to assess the performance and adequacy of algorithms across
three metrics (code, link, and JavaScript source coverage).
Finally, we distill 14 insights and lessons learned. Our results
show that despite a lack of clear and homogeneous descrip-
tions hindering reimplementations, proposed and commonly
used crawling algorithms offer a lower coverage than random-
ized ones, indicating room for improvement. Also, our results
show a complex relationship between experiment parameters,
the study’s domain, and the available computing resources,
where no single best-performing crawler configuration exists.
We hope our results will guide future researchers when setting
up their studies.

1 Introduction

Web security measurements have become invaluable tools
for empirical investigations exploring various security and
privacy-related issues from real distributions, such as the
prevalence of in-the-wild vulnerabilities [37, 45, 56] and the
effectiveness of defense mechanisms [59,78] at scale, to name
a few. An essential technique enabling such measurements
is web crawling, which starts from a list of seed websites,
e.g., Alexa, Tranco [62], and CrUX [1], and then iteratively
browses web pages to discover as many states as possible.

Crawlers’ effectiveness in finding new states relies on deter-
mining whether a state is new via page similarity algorithms,

and executing the appropriate actions, using navigation al-
gorithms. Both types of algorithms have been challenged
by increasingly dynamic pages and complex web interface
logic, leading to partial exploration, thus missing potentially
vulnerable states, ultimately affecting the precision and accu-
racy of web measurement studies. Over the past decades, the
research community has proposed new crawling techniques
to address these shortcomings, often combining novel page
similarity and navigation algorithms, e.g., EotS [20], Black
Widow [25], and FeedEx [27]. Although web crawlers have
become more sophisticated, their impact has been limited as
prior works use rather elementary crawling techniques.

Assessing the effectiveness of crawlers and their use in em-
pirical studies is challenging, primarily because prior works
have only marginally addressed comparative evaluations of
crawling techniques. Most comparative evaluations are often
conducted in isolation when assessing a new approach’s ef-
fectiveness, using heterogeneous experimental parameters,
testbeds, and datasets, making results difficult to transfer
across papers. Only recently, independent comparative stud-
ies [4, 80] measured the accuracy and precision of different
crawling algorithms. However, either they covered only page
similarity from domains like computer vision, leaving out ap-
proaches used in practice [80], or evaluated web automation
tools like Puppeteer [2] and Selenium [3], which do not imple-
ment any crawler algorithm. As a result, we still know little
about crawlers’ effectiveness as used in security evaluations.

In this paper, we bridge this gap with one of the first
systematizations of the current state-of-the-art web crawl-
ing techniques—both proposed and used in practice—and
an assessment aimed at measuring performance in concrete
application scenarios such as testing and data collection in
live websites. As a first step, we review the past 12 years of
publications from the top venues in security, privacy, and web
measurements, i.e., 7,840 papers, identifying 403 conduct-
ing a measurement, identifying algorithms, parameters, and
methodologies for collecting data through crawling. We then
review prior works proposing new crawlers in the top three
software engineering conferences (917 papers), identifying

additional 27 papers that proposed, in total, 35 crawling tech-
niques proposing the first taxonomy of crawling algorithms.
Finally, we reimplement and patch 27 algorithms and variants
into our evaluation framework called Arachnarium and run
them against popular web applications and in-the-wild web-
sites to measure code coverage, link, and JavaScript source
code discovery. We also assess the impact of the method-
ological choices identified in our literature review, estimating
the impact of algorithmic and parameter adjustments. Finally,
we summarize and put into perspective our findings within
the research community. We offer concrete inputs for future
large-scale security studies and insights on the current state-
of-the-art algorithms in the web crawling domain for security
testing.

Overall, we observed that descriptions of methodological
parameters and algorithms are often insufficient, incomplete,
and not self-contained, making reimplementation challenging.
For example, 24 papers in the crawling algorithms survey
do not contain sufficient details about the implemented al-
gorithms. We discovered that breadth-first search (BFS) and
URL comparison are the two most popular techniques among
the ones with adequate descriptions. The empirical evaluation
of all techniques shows that randomized algorithms, in partic-
ular randomized BFS, offer better performance than standard
algorithms, providing a general increase of average cover-
age, from +8% in LoCs up to +21% for JavaScript source
code. Our results also identified time breakpoints after which
a crawling algorithm performance increment becomes more
appreciable, i.e., 30, 50, and 100 seconds for code, link, and
JS source code coverage.

To summarize, we make the following contributions:

• We present a systematization of knowledge of web
crawlers as used in security and privacy, and web empir-
ical measurements based on the review and analysis of
403 papers;

• We decompose the identified algorithms and organize
them in a taxonomy of proposed and used-in-practice
crawling algorithms;

• We propose and release Arachnarium, a framework for
the comparative evaluation of web crawlers against real-
size web applications and live websites;

• We evaluate algorithms both individually and in combi-
nation, assessing their performance across metrics ex-
tracted from real application scenarios identified in our
survey, revisiting the impact of prior methodologic deci-
sions;

• We present 14 insights, lessons learned, and recommen-
dations for our community and researchers developing
and using crawlers.

Open Science Statement — We release Arachnarium
source code1 and experiment data2.

1https://github.com/pixelindigo/arachnarium/tree/sec24
2https://github.com/pixelindigo/state-of-the-krawlers

2 Systematization

The first part of our paper is a systematization of large-scale
security and web measurement studies using crawlers as a
means of data acquisition (Section 2.1). Then, we systematize
prior work proposing and combining new techniques, where
we decompose and organize them in a taxonomy for crawling
algorithms (Section 2.2).

General methodology — Two researchers executed the sur-
vey and systematization of this section. Both defined selection
criteria, analysis rules, and executed data collection. One read
and processed each paper and the other one validated results
via random sampling. We detail the remaining steps of our
analysis in the remaining sections.

2.1 Web Measurements

2.1.1 Analysis Methodology

Survey criteria — We selected all published papers from the
security and web measurements conferences of the past 12
years (from 2010 to 2022). We selected the USENIX Security
Symposium, the IEEE S&P Symposium, the ACM CCS, the
NDSS Symposium, the ACM IMC, the ACM WWW and
the PET Symposium, covering a total of 7,840 papers, and
performed a keyword-based search to identify web measure-
ment papers. We downloaded papers matching any of these
keywords: tranco, alexa, and the combination of top and
site. We did not include the keyword CrUX as it began pub-
lishing rankings in 2022 [66]. Whenever available, we used
the web interface for the full-text keyword-based search, i.e.,
ACM and IEEE. USENIX Security, NDSS, and PETS do not
have a web interface with full-text search support and thus
we downloaded all papers and performed the keyword search
on our server. In total, the papers matching our keywords are
1,057 papers.

Systematization criteria — We processed the 1,057 papers
as follows. First, we located and annotated the text containing
a description or instantiation of the paper’s methodology,
such as paragraphs, sentences, tables, and appendices. Then,
we identified and enumerated the relevant features presented
in their methodologies. These features include the specific
algorithms used, such as the navigation strategy and the page
similarity algorithm, and experimental parameters, such as
navigation depth, navigation limit, page load limit, and the
collected resources. In addition, we manually noted the topics
of a paper and the crawling objectives in the paper. For the
topics, we compiled a list of topics starting from the top-level
topics extracted from the HotCRP paper submission page and
removed or merged duplicated terms. For the objectives, we
noted the resource being collected and the purpose of the data
collection via crawlers.

Collected sources — Out of the 1,057 papers matching our
keywords, we discarded 654 papers because they did not em-

https://github.com/pixelindigo/arachnarium/tree/sec24
https://github.com/pixelindigo/state-of-the-krawlers
https://github.com/pixelindigo/arachnarium/tree/sec24
https://github.com/pixelindigo/state-of-the-krawlers

Algorithms Crawling parameters

Page sim. Nav. depth Nav. limit Load

Navigation Tot. Sp
ec

.

N
on

e
U

ns
pe

c.

N
/A

Sp
ec

.

U
ns

pe
c.

N
/A

Sp
ec

.

U
ns

pe
c.

N
/A

Sp
ec

.

U
ns

pe
c.

BFS 27 19 4 4 - 26 1 - 24 3 - 9 18
DFS 2 1 - 1 - 2 - - 2 - - 1 1
Random 36 20 14 2 - 30 6 - 34 2 - 23 13
Rule-based 19 4 14 1 - 16 3 - 15 4 - 8 11
Search engine 8 2 6 - - 8 - - 7 1 - 3 5
Unspec. 38 12 6 20 - 14 24 - 23 15 - 7 31
None 273 - - - 273 - - 273 - - 273 156 117

Tot. 403 58 44 28 273 96 34 273 105 25 273 207 196

Table 1: The distribution of page similarity algorithms and
crawling parameters over navigation algorithms.

ploy automated crawling. The final number of papers consid-
ered in this survey is 403.

2.1.2 Results

Algorithms used in practice — Of the 403 surveyed pa-
pers, only 32.3% of them (i.e., 130 papers) navigate websites
whereas the remaining 273 papers (i.e., 67.7%) visit a single
page only, thus not relying on neither a navigation nor a page
similarity algorithm.

Table 1 shows the result of our analysis distributed over the
navigation algorithms. We say that the algorithm is specified
if the paper presents or mentions the name of the algorithm
being used. We say unspecified if the paper uses an algorithm,
but it does not specify which one. We also consider two other
categories for algorithms. When an algorithm is not used, we
say that the algorithm is none. For example, consider the case
of a methodology that does not navigate web pages. Finally,
when a paper does not use any navigation strategy, we say
that the similarity algorithm is not applicable (N/A).

Specified vs unspecified algorithms — More than half of the
papers navigating websites (i.e., 84 papers which is 64.6%)
specify precisely both the navigation strategy and the page
similarity, including when page similarity is not used. On
the other hand, 35.4% of the papers navigating websites do
not specify (i) the navigation strategy (i.e., 18 papers), (ii)
the page similarity (i.e., eight papers), or (iii) both (i.e., 20
papers).

Navigation strategies — 70.8% of the papers navigating
websites (i.e., 92 papers, amounting to 22.8% of surveyed pa-
pers) specify the exact navigation strategy. The most common
strategy is randomized (36 papers, e.g., [31, 42, 58]). Other
27 papers (e.g., [21, 72]) use the breadth-first search (BFS),
whereas 19 papers (e.g., [11, 68]) use custom strategies. Next,
eight papers employed search engines to retrieve URLs of
popular domains to visit (e.g., [6, 44]). Finally, two papers
(i.e., [19,35]) use the depth-first search (DFS). The remaining

Topics Navigation Page Sim.

W
eb

Se
cu

ri
ty

M
ea

su
re

m
en

ts

Pr
iv

ac
y

Fi
ng

er
pr

in
tin

g
Sy

st
em

Se
cu

ri
ty

M
al

w
ar

e
N

et
w

or
ks

N
on

e
U

ns
pe

ci
fie

d

R
an

do
m

B
FS

R
ul

e-
ba

se
d

O
th

er
s

U
R

L
N

on
e

U
ns

pe
ci

fie
d

O
th

er
s

To
ta

l

5 5 28 3 6 11 2 3 13 10 2 0 53
5 19 10 3 2 3 0 5 4 8 1 37
5 5 5 26 3 3 0 0 0 4 0 2 0 32

5 5 19 1 4 1 5 1 6 6 0 0 31
5 21 2 4 1 0 1 6 0 1 1 29

5 5 5 11 1 4 1 1 1 3 4 1 0 19
5 5 10 4 4 1 0 0 4 2 2 1 19

5 12 1 0 0 4 0 1 3 1 0 17
5 8 2 0 1 0 1 1 1 2 0 12

5 5 7 2 0 0 0 1 0 0 3 0 10
5 5 10 0 0 0 0 0 0 0 0 0 10

⋆ 21 47 37 28 17 11 4 102 9 8 9 4 2 11 14 6 1 134
⋆

⋆
191 189 155 60 29 21 14 273 38 36 27 19 10 54 44 28 4 403

Table 2: Algorithms over the top 10 most popular topics.
Legend: ⋆ = papers in less popular topics; ⋆

⋆
= col. totals

papers either use a navigation strategy but do not specify one
(i.e., 38 papers) or do not go beyond the first page (i.e., 273
papers).

Page similarity — In total, 78.5% of the papers navigating
websites (i.e., 102 papers) specify the way they handle page
deduplication. More than half of them specify the dedupli-
cation algorithm, with URL matching being the most used
with 54 papers (e.g., [21, 35]). In contrast, only four papers
(i.e., [39, 73, 81, 84]) use DOM-based algorithms. The re-
maining papers navigating websites either do not use page
deduplication collecting all pages (i.e., 44 papers) or use one
but do not specify which one (i.e., 28 papers).

Topics — When looking at the topics, the most popular three
are web security, privacy, and measurement. In total, 339 are
at least on one of these three topics, with web security mea-
surements being more represented than privacy measurements
(i.e., 84 papers vs 60).

No Crawling — Among the 273 papers that did not navigate
websites, we looked for the rationales behind such a decision.
We first searched for them in the problem statement, research
questions, methodology, and limitations text. Alternatively,
we looked for similar papers in the same domain or with a
similar problem setting to infer the necessity of not navigating
pages. When we could not find similar papers, we determined
whether crawling was necessary based on the paper’s objec-
tives. Table 3 shows the results of our analysis, where we
count the number of papers that do not navigate sites over the
objectives and the need to crawl. Overall, 105 papers did not
need to navigate webpages as collecting more data by visiting
more webpages from the same website is unnecessary as it
produces duplicated data points. The remaining 168 papers

Need navigation
Objective No Yes Tot.

Predefined URL List 48 - 48
Website Probing 20 - 20
Censorship 13 - 13
Network Routing 13 - 13
Traffic Simulation 4 - 4
Side-Channel 3 - 3
Website Categorization 3 - 3

Website Fingerprinting - 44 44
Browser Performance - 25 25
Tracking - 14 14
Page Resources - 14 14
In-Browser Network Activity - 10 10
CSP & Other Headers - 8 8
Back-end Stack - 8 8
Breakage - 7 7
Advertisements - 6 6
Cookies - 6 6
Page Content - 4 4

JavaScript Analysis 1 21 22

Total 105 168 273

Table 3: The distribution of no navigation papers.

did not navigate not because it was unnecessary but as a trade-
off for the limited resources or as an arbitrary choice. When
aggregating papers by objectives, we observe two distinct
clusters and one outlier paper, which we will discuss next.

The first cluster is of papers that do not need to crawl.
Among these, to mention a few, we have a line of works (48
papers) that need to analyze specific pages found in URL
feeds, e.g., phishing [40], or papers that probe specific end-
points to detect vulnerable or malicious websites (20 papers),
e.g., typosquatting domains [75]. We also have works on cen-
sorship (e.g., [63, 79]) that measure or circumvent blocking
(13 papers) and network routing (13 papers). In all these cases,
navigating web pages with a crawler is unnecessary.

The second cluster is dominated by the papers study-
ing website fingerprinting (44 papers), evaluating browser
enhancements (25 papers), measuring tracking prevalence
(14 papers), and analyzing embedded resources (14 papers).
These works could benefit the most from using crawlers. The
authors often explicitly discuss or acknowledge the implica-
tion of not crawling. For example, the authors limit the scope
of the study to a lower-bound analysis (e.g., [12,50]) or crawl
only a limited selection of websites (e.g., [24]).

Finally, 22 papers collected JavaScript files to find ma-
licious or vulnerable scripts. All of them will benefit from
collecting more samples except for one. In Zeng et al. [83], the
authors look for homepages that include a specific JavaScript
library, and from those, they select only ten pages to conduct
a user study. While navigating pages increases sample variety,
that will not translate into a better dataset for user studies as
participants are subject to fatigue, thus justifying a smaller
sample set.

Crawling parameters — Of the 403 papers, 388 papers spec-
ify at least one experimental parameter, such as navigation
depth, navigation limit, or page load limit. Conversely, 204
papers define at most two parameters. Finally, only 199 papers
specify all the parameters. Still, the majority of the papers
describing the crawling techniques specify a parameter.

Collected resources — One of the most collected types of re-
sources is network messages and fields (229 papers) to extract
domain names and IP addresses (e.g., [71]) or HTTP headers
like cookies (e.g., [38,55]). The second most common type of
collected resource is information about the browser execution
environment (148 papers), which is then used to study the
relevance and prevalence of vulnerabilities or assess new de-
fense mechanisms. For example, Lekies et al. [46] collected
dynamic JavaScript to evaluate the cross-site scripting inclu-
sion vulnerability risks. Another example is Soni et al. [70],
where a crawler collected JavaScript from popular websites
to evaluate their proposed JavaScript signing method. Finally,
HTML code (139 papers) and screenshots (30 papers) are
common too, especially in works analyzing malicious pages
such as phishing (e.g., [33, 41]). The rest (19 papers) collect
miscellaneous metrics, such as memory snapshots or power
consumption (e.g., [47, 69]).

2.2 Crawling Algorithms

2.2.1 Analysis Methodology

Survey criteria — For the second part of our systematiza-
tion, we focused on papers proposing new crawlers by adding
to our previous seed of papers the ones published over the
past three years in the top three software engineering con-
ferences, i.e., IEEE/ACM ICSE, the ACM ESEC/FSE, and
the IEEE/ACM ASE. We downloaded all titles, abstracts, and
papers matching one of these keywords: crawling, testing,
web automation, web application scanning, large-scale web
measurements, in-the-wild and large-scale analyses. Then, we
read and searched for the pseudo-algorithm, diagrams, tech-
niques, tool names, URLs to the source code, or any other
references detailing how the technique works. If the paper
included the URL to the code, we downloaded it and manu-
ally reviewed it, searching for the module implementing the
crawling logic.

We extended our survey to referred papers, tools, and pro-
totypes listed in the evaluation and related work sections.
For example, the evaluation section of Black Widow [25]
contains back-to-back experiments with two web application
scanners from prior academic works, i.e., Enemy of the State
(EotS) [20] and jÄk [61], and four non-academic tools, i.e.,
Arachni [43], Skipfish [82], GNU Wget [57], w3af [65] and
ZAP [76]. Whenever we identified a new paper, we reviewed
it using the same criteria as before. Starting from 24 seed
papers across security and software engineering venues, we
identified additional 35 papers. However, the resulting 59 pa-

Page similarity Navigation strategy

Name U
R

L(
s)

D
O

M
tr

ee

D
O

M
st

r.

Sc
re

en
sh

ot

E
ve

nt
s

H
TT

P

D
F

S

JA
W

B
F

S

R
an

do
m

R
L-

ba
se

d

C
od

e-
co

v.

Crawljax [14, 51–53, 80] 5 5 5 5 5
Dagger [77] 5 5
jÄk [61] 5 5 5
WebExplor [85] 5 5 5
Artemis [7] 5
AutoBlackTest [49] 5 5
Black Widow [25] 5 5
EotS [20] 5 5
FeedEx [27] 5 5
JAW [37] 5 5
KAFE [13] 5 5
LigRE [22, 23] 5 5
ProCrawl [67] 5 5
SecuBat [36] 5 5
Fetterly et al. [28, 30] 5 5 5
Lucca et al. [17, 18] 5 5
Broder et al. [10, 30] 5
Crescenzi et al. [15] 5 5
Manku et al. [48] 5

Arachni [43] 5 5 5 5
Skipfish [82] 5 5 5
Wapiti [74] 5 5 5
GNU Wget [57] 5 5
w3af [65] 5 5
ZAP [76] 5 5 5

Total 10 12 8 1 1 4 4 1 10 3 2 2

Table 4: Overview of the identified tools and algorithms.

pers included eight papers that were previously analyzed in
Section 2.1 and another 24 papers that didn’t include names
and details of the algorithms deployed. As a result, we studied
the remaining 27 papers.
Systematization criteria — We analyzed the tools and tech-
niques and decomposed them into their building block al-
gorithms. For that, we reviewed the pseudo-algorithms, text
descriptions, and source code when available, looking for the
algorithms used for page similarity and navigating web pages.
Collected sources — Our survey identified 27 papers from
security and software engineering venues that contain suffi-
cient details about the used algorithms. The analysis of these
papers identified, in total, 25 tools and techniques.

2.2.2 Results

The results of our systematization are in Tables 4 and 11.
Table 4 lists and maps the names of crawling techniques
and the building block algorithms. Table 11 lists and briefly
describes the individual building block algorithms.
Page similarity — Our survey identified 27 distinct page
comparison techniques, which we organize in six groups.

Many tools, i.e., 14, use exactly one algorithm. Ten tools

support multiple algorithms, two of which allow to select
one at a time (i.e., Crawljax [51], and Lucca et al. [17])
whereas the others combine multiple algorithms in a single
function. For example, jÄk [61] sums the metrics of the DOM
trees and of the registered JavaScript event handlers. The
remaining paper (i.e., Artemis [7]) does not specify the page
comparison algorithm used when visiting websites.

When looking at the objects used for page similarity, prior
works and tools covered multiple types and levels of granu-
larity. For example, URL-based approaches range from com-
paring the full URL to comparing URL components (i.e.,
URL path, fragment, and query string). We can make a sim-
ilar observation on the DOM-based method, where current
approaches can use entire DOM trees, e.g., for the tree-edit
distance (RTED algorithm [60]) or a node-by-node compari-
son. Alternatively, existing approaches determine similarity
by looking at specific HTML tags such as input tags, button
tags, HTML forms, hyperlinks, and text. The HTTP response
messages’ various fields have also been considered for com-
parison. Among these, we have the HTTP response code,
the cookie headers, all HTTP headers, and the HTTP request
method. Finally, prior work has proposed using algorithms
from the computer vision domain to create image distance
functions as a metric for page similarity.

Table 11 presents all the identified algorithms grouped
by the object. We note that the DOM tree-based category
is the most popular. However, there is a wide range of ap-
proaches. The most popular DOM tree-based approach is tree
edit distance [60]. The most popular algorithm is the URL
exact match algorithm, used by most of the surveyed papers,
both by crawlers proposed by prior work (i.e., [25, 85]), tools
(i.e., [43, 57, 65, 76]) and in large-scale, in-the-wild studies
(i.e., [37]).

Navigation Strategies — For the navigation strategy, all tools
except for four (Dagger, Manku, Lucca, and Broder) imple-
ment a navigation strategy which we can group in six families,
i.e., BFS, DFS, depth-limited BFS (JAW), randomized nav-
igation, reinforcement learning-based navigation, and code-
coverage driven navigation. Of these, 20 tools implement
one strategy only, and one tool (i.e., Crawljax) implements
multiple ones, which can be selected with a configuration
parameter.

The BFS and randomized algorithms are the two most used
navigation strategies among all the surveyed papers and tools.
Most randomized strategies are based on a random selection
of links to visit, whereas the other two combine systematic
exploration with randomized elements. The first is a variant
of the BFS strategy with shuffled URLs within a node. The
second one selects a random URL after path exhaustion.

Scheduler

Cr
aw
lja
x

ZA
P

Cu
sto
m

…

Crawlers

W
or
dP
re
ss

Jo
om
la

Cu
sto
m

…

Applications

CFG

Crawljax WordPress+
Crawljax google.com+
…

BFS

DFS

WWW

Figure 1: Architecture of Arachnarium.

3 Arachnarium: An Evaluation Framework

In this section, we present our experimental setup, imple-
mented by our tool Arachnarium.

3.1 Architecture Overview

Arachnarium is a fully-extensible and scalable framework
that enables the comparative evaluation of hundreds of par-
allel crawler configurations against real websites and web
applications, at scale. Figure 1 shows an overview of the ar-
chitecture. Arachnarium has four main components, i.e., the
crawler module, the web application module (optional), the
scheduler module, and the analysis module. The crawler and
web applications modules rely on Docker [32], allowing us
to scale experiments by running parallel experiments of the
same web application and crawlers concurrently. The web ap-
plication module can be disabled when testing live websites.

The primary input of Arachnarium is a configuration file
specifying the tests to execute. An Arachnarium test defines
the crawler, the web application to test (local or live), and
the test parameters. The parameters can be command-line
arguments for the tool or configuration options for the web
application. The configuration file also specifies global ex-
periment parameters, such as the time budget assigned for
individual experiments or the number of concurrent execu-
tions. When running a test, the scheduler first deploys the web
application container if needed, performs initial health checks
to determine if the application is up and running (i.e., HTTP
GET probes), and then executes the crawler. When the test
reaches the maximum execution time, Arachnarium halts the
test. The data generated by the crawlers (navigation maps and
log files) and by the web application (coverage data and log
files) remains in the storage for post-processing.

Users can extend Arachnarium with new crawlers or ap-
plications by providing a docker-compose file—nowadays
a commonly available artifact, and enabling the provided
code instrumentation module. This paper’s version of
Arachnarium fully supports PHP-based web applications and
can instrument the PHP interpreter to measure code coverage
through the XDebug interface [64]. Finally, the analysis mod-
ule collects each test’s activity log and returns statistics about
crawler performance.

3.2 Testbeds

The evaluation in this paper covers two types of web applica-
tions: standalone web applications and live websites.

DS1: Standalone Web Applications — DS1 consists of
web applications from prior works (i.e., [20, 25, 80]), which
contain both modern applications (e.g., WordPress without
plugins) and old ones but repeatedly-used in prior work (e.g.,
SCARF). We initialized these webapps with database records
and configuration shared by the authors of [25] and [80] and
deployed them locally. Each web application of DS1 is fully
supported and integrated into Arachnarium.

DS2: Popular Websites — The second dataset is a list of
popular websites. Reproducing results on live websites is
generally challenging because of the transient nature of web-
pages’ content and structure, which can change over time. In
the recent work, Hantke et al. [29] showed that web archives
could help improve reproducibility. However, they may not be
an adequate choice for our evaluation. Web archives are cre-
ated and maintained by crawling live websites; hence the used
crawlers would bias our evaluation, and most importantly, our
results would have been limited by the coverage of these
crawlers. Accordingly, in this paper, we opt for live websites
from Chrome User Experience Report (CrUX) [1], which is
one of the most accurate lists reflecting sites popularities [66].
Arachnarium fully supports DS2.

3.3 Metrics

We intend to evaluate crawling algorithms’ performance
which can be helpful in common and practical deployment
scenarios. We identify these scenarios and metrics from our
systematization in Section 2, which are all implemented by
Arachnarium.

M1: Code coverage — One of the application scenarios of
crawlers is automated web testing, where crawlers are used
in black-box application scanners to explore the attack sur-
face to collect endpoints for the detection of vulnerabilities
via ad-hoc tests. Crawlers also support other vulnerability
detection techniques, such as server-side code analysis tech-
niques [5], where a crawler provides execution traces to a
concolic execution engine. In all these scenarios, crawlers are
a means to discover new pages and reach deeper states, which
ultimately can be measured via code coverage. Arachnarium
obtains code coverage of a web application via the XDebug
interface [64].

M2: JavaScript source coverage — Our survey showed that
artifacts from the JavaScript engine, e.g., JavaScript code, are
the second most collected data items. For example, Lekies
et al. [46] collect dynamic JavaScript to evaluate the cross-
site scripting inclusion vulnerability risks. Therefore, the sec-
ond metric we consider in our experiments is the amount of
unique JavaScript code retrieved by a crawler. In this paper,

Type Description Metric

DS1 WordPress v5.1.0 (CMS), OwnCloud v10.10.0 (Cloud storage),
PrestaShop v1.7.5-1 (eCommerce), Joomla v3.9.6 (CMS), Dru-
pal v8.6.15 (CMS), Vanilla v2.0.17.10 (Forum), phpBB v2.0.23
(Forum), SCARF v2007 (Conf mgmt), HotCRP v2.102 (Conf
mgmt), WackoPicko v2021 (Benchmark for scanners), Address-
Book v8.2.5 (Benchmark used by [80])

M1

DS2 CrUX, random 2000 websites from Top10K M2-3

Table 5: Datasets for our experiments.

Arachnarium extracts all script tags from the visited pages
and calculates the SHA-512 hashes on the inline and external
JS code to determine uniqueness.
M3: Link coverage — The most common collected artifacts
are network messages like HTTP requests the crawler gener-
ates when navigating a page, like clicking on links. Link cover-
age is also an established metric when benchmarking web ap-
plication scanners in black-box settings (see, i.e., [20, 25, 61])
as the server-side component is unaccessible and thus un-
able to determine coverage via executed code. Accordingly,
Arachnarium uses link coverage as the third metric by ex-
tracting all anchor tags from the visited pages and using exact
string matching of the href attribute.

3.4 Evaluated Crawlers
Table 6 shows the list of techniques that we evaluated and
are available in Arachnarium. We identified 39 candidate
techniques, of which 35 are candidate building block algo-
rithms. Section 3.4.1 presents the reimplementation rules that
we followed when creating Arachnarium3. The remaining
four techniques are tools implementing both page similarity
and navigation strategy. These algorithms are interconnected
from one to another, for which we could not decouple them
tested as a whole. Section 3.4.2 presents these tools.

3.4.1 Candidate Building Block Algorithms

Our survey identified 35 basic algorithms that we considered
for the integration into Arachnarium extensions of Crawljax.
The integration was difficult because of incomplete informa-
tion, missing code, or reference implementations, resulting in
23 implementations.

Code Available — If we were able to run the source code,
then we integrated the code in Arachnarium for the evalu-
ation. In two cases, i.e., jÄk and EotS, we were unable to
run the code successfully. For jÄk, we could not resolve the
no-longer supported version of the QT library. In this case,
we used the paper and the source code as a reference im-
plementation to reimplement the basic algorithms. For EotS,
we obtained a Docker image from the authors; however, the

3We reimplemented the algorithms of this section as extensions of
Crawljax.

Features Code
Techniques Page sim. Nav. Impl. exist Ref. Impl. Eval

Building block algorithms
URL Equality 5 - 5 5 5
RTED 5 - 5 5 5
SimHash 5 - 5 5 5
TLSH 5 - 5 5 5
Color histogram 5 - 5 5 5
Perceptual hash 5 - 5 5 5
Block-mean 5 - 5 5 5
PDiff 5 - 5 5 5
SSIM 5 - 5 5 5
SIFT 5 - 5 5 5
jÄk 5 - 5 5 5
ProCrawl 5 - - 5 5
FeedEx - 5 - 5 5
DFS - 5 5 5 5
JAW - 5 5 5 5
BFS - 5 5 5 5
Rnd BFS - 5 5 5 5
Rnd State - 5 5 5 5

Variants
URL Path Eq. 5 - - - 5
URL Path Eq. & QS 5 - - - 5
RTED Tr. 1 5 - - - 5
¬RTED Tr. 2 5 - - - 5
¬RTED Tr. 3 5 - - - 5

Tools
Arachni 5 5 5 5 5
ZAP 5 5 5 5 5
Wapiti 5 5 5 5 5
Skipfish 5 5 5 5 5

Unable to reimplement
Tree Equality 5 - - 5 -
UI Controls 5 - - - -
Root-Link Paths 5 - - - -
Common Shingles 5 - - - -
TAF 5 - - - -
LevenSeq 5 - - - -
Dagger 5 - - - -
LigRE 5 - - - -
Fetterly 5 - - - -
Artemis - 5 - - -
WebExplor 5 5 - - -
EotS 5 5 5 5 -

Table 6: Evaluated algorithms.

code kept crashing. We tried to reimplement EotS; however,
we could not find a way to isolate the algorithms without
affecting the implementation.

Code Not Available — When the source code was unavail-
able, we used the reference implementation to reimplement
the crawlers. We fully reimplemented the algorithms in two
cases, i.e., ProCrawl and FeedEx.

Missing Details — For all other cases, we did not have suf-
ficient details to reimplement the algorithms. Appendix A.2
list the missing details. Also, we discarded the Tree Equality
algorithm because it compares two DOM trees node by node
and returns false as soon as one single node differs. We con-

sider such an approach too brittle and did not consider it for
the evaluation.

Proposed Variants — We also considered five techniques
derived from popular and promising algorithms by recent
works. We designed variants for URL equality, as the most
used technique across all papers of our surveys, and RTED,
the best performing in Yandrapally et al. [80].

Variants of URL Equality — URL Equality is one of the
most popular page similarity techniques identified according
to our survey. A drawback of this approach is its sensitivity to
small changes, e.g., path or query string alterations result in a
different page. That may not be true in practice, as different
URL paths and parameters may not indicate a state change.
Accordingly, we consider two variants. The first one, called
URL Path Equality, is a string comparison between URLs
considering only the domain and the path. The second one
called URL Path Equality & QS, includes in the comparison
the query string of the URL; however, it ignores the value of
the query string parameters.

Variants of RTED — RTED calculates the tree edit distance
between two trees, which prior work showed it outperforming
other techniques [80]. RTED implementations currently run in
polynomial time, which can be impractical in many scenarios.
Accordingly, we consider three variants to simplify the com-
plexity of comparing two trees. We observe that a DOM tree
can include multiple identical subtrees (widgets) in lists, e.g.,
menu items and lists of products. Therefore, we could reduce
the size of a DOM tree by collapsing lists of identical widgets.
We call this variant RTED with DOM Transformation #1.
We further observe that similar pages can share widgets, and
we could use those widgets for the comparison. We say that
two pages are similar if they share the same widgets. We
call this variant ¬ RTED with DOM Transformation #2.
Finally, we also relax the widget definition to any subtree on
a page, even when the subtree appears only once. This way, a
page can be seen as a set of widgets. We say that two pages
are similar if both have the same set of widgets. We call this
variant ¬ RTED with DOM Transformation #3.

3.4.2 Compound Tools

Finally, we integrated in Arachnarium four tools, i.e.,
Arachni, Skipfish, Wapiti, and ZAP. As these tools are
used for security testing, they run tests while crawling, which
are likely to exercise new branches or exceptions, increasing
coverage. Accordingly, we turned off all vulnerability detec-
tion features. We could not evaluate WebExplor because we
were not able to resolve the exact way the Gestal algorithm is
used when processing a webpage. We asked the authors for
the source code, but they never answered our emails. Finally,
while we managed to run EotS, it was unstable with a high
rate of crashes, making it particularly challenging to collect
data reliably; thus, we discarded it.

4 Experiments and Results

In this section, we evaluate the crawling algorithms’ perfor-
mances and methodological choices when used to collect data.
After presenting the design of our experiments (Section 4.1),
we present our results. First, we determine, if any, the best-
performing algorithms looking at total coverage at the end of
each run and at the coverage speed (Section 4.2) . Then, we
compare coverage results to determine how much surface a
crawler can discover than others, using two baselines (Sec-
tion 4.3). Finally, we assess the methodological decisions our
survey identified and evaluate their impact (Section 4.4).

Reducing Experiment Complexity — Arachnarium im-
plements 17 page similarity algorithms and six navigation
strategies, which amounts to a total of 102 crawler configura-
tions to test. As a preliminary step, we reduce the number of
page similarity algorithms to test, discarding those that per-
form poorly. We run all the page similarity implementations
using only BFS three times against DS1 (self-hosted web
applications) instead of DS2 (live sites) to reduce traffic load
on them. At the end of each run, we calculated the maximum
across three runs and the total unique LoCs executed. We
selected the top ten page similarity algorithms with the high-
est average weighted rank based on code coverage and used
them for the main experiments (see below). The complete
results of this experiment are in the data repository. The top
ten algorithms selected for the rest of this paper are ¬RTED
Tr. 2, TLSH, ¬RTED Tr. 3, SimHash, URL Path Eq. & QS,
URL Path Eq., URL Eq., Phash, ProCrawl, and Block-mean.

4.1 Experiment Design

This section presents the design of experiments and the mea-
surements of this paper.

4.1.1 Experiments

The first experiment (Exp1) measures code coverage in DS1.
For that, we combine the top 10 page similarity algorithms
from our preliminary experiment with all six navigation strate-
gies. The second experiment (Exp2) measures the coverage of
JavaScript source code and links against dataset DS2. Running
all crawler configurations multiple times against the same
sites can generate unwanted traffic. Accordingly, we sample
increasingly large random samples from disjoint CrUX Top
10K buckets. More specifically, we randomly select 200 do-
mains from the Top 1K, 800 from the Top 5000 (excluding the
Top 1K), and 1K from the Top 10K (excluding the Top 5K),
resulting in a dataset of 2K random domains. We visit these
2K domains using the same top 10 performing page similarity
algorithms and top five navigation strategies of Exp1 by code
coverage.

4.1.2 Coverage Data

In our experiments, we run a crawler configuration three times
against the same target site, i.e., a self-hosted web application
(DS1) or a live website (DS2). For each action the crawler
performs, we collect the timestamped coverage data, i.e., ex-
ecuted unique lines of code or discovered unique script and
link tags. Then, we sum the unique coverage data points per
run and pick the greatest. Collecting coverage data from the
live sites (Exp2) was not as reliable as from self-hosted web
applications (Exp1) because of external factors such as con-
nection timeouts or temporary site unavailability, resulting in
sites with partial coverage data. Instead of scheduling more
runs to compensate for the missing data points, and thus in-
creasing website loads, we use the coverage data of the first
successful run among the three attempts.

4.1.3 Experiment Measurements

Absolute coverage — We calculate the total coverage of a
crawler on a given dataset as the sum of the coverage for each
target site in the dataset. We also calculate the coverage of
individual algorithms, i.e., page similarity or navigation, by
averaging the total coverage data runs over the other algo-
rithm, e.g., page similarity over navigation and vice versa.

Relative coverage — This definition of total coverage is
absolute and cannot show whether two crawlers discovered
the exact same states or different ones. For example, if two
crawlers covered 100 unique lines of code each, the absolute
coverage metric will rank them as equivalent. However, as
each crawler implements a different algorithm, it can happen
that while both total 100 lines of code, these lines may not
be the same ones. Accordingly, we introduce the notion of
relative total coverage to quantify the extent to which two
crawlers covered the same and different areas of a target site.
We define the relative coverage as the increment (or decrease)
of the total coverage of a crawler over a baseline.

Baseline 1: Popularity — As we aim to assess method-
ologic decisions, e.g., status quo, we set as a first baseline
the coverage for the most popular algorithms from our sur-
veys. Our survey on crawling algorithms shows that DOM
tree techniques are the most used similarity algorithm used by
crawlers. However, the DOM tree is a family including several
specific implementations, e.g., RTED or tree equality. None
of these implementations is more popular than URL Eq. – the
second most popular one. The survey of web measurement
papers also reveals that URL Eq. is the most commonly used
technique to deduplicate pages. Accordingly, we select URL
Eq. for the baseline. The web measurement survey shows
that randomized strategies are mostly used for the naviga-
tion strategy. However, many papers do not clarify the exact
type of randomized algorithms,e.g., Rnd BFS and Rnd State.
The crawler algorithms survey, however, shows that BFS is
the most popular one. Accordingly, we select BFS for the

baseline.

Baseline 2: Global coverage — Finally, we compare the
coverage of each crawler against the union of the coverage of
all crawlers except for the one evaluated. For the comparisons,
we use the difference set for the increments and decreases
and the intersection set for the known surface. Increment or
decrease from this global baseline can precisely determine
unique features of crawlers in discovering the target sites’
surface that others cannot discover.

Hardware and software configuration — We run
Arachnarium with a maximum of 12 parallel workers, a wait
time after page reloads of 500 ms, and an interval between
actions of 500 ms. We run our experiments on a GNU/Linux
Debian 11 system running on two AMD EPYC 7h12 64-Core
Processors with 2TB of RAM. We configured Arachnarium
to run inside on RAMFS of 300GB to speed up disk I/O
operations and avoid disk write bottlenecks.

4.2 Best-performing Algorithms

We now compare crawler configurations and algorithms using
the total absolute coverage to determine the best-performing
algorithms from two angles: the total coverage at the end of
each run and the coverage growth over time.

4.2.1 Total Coverage

First, we determine the total coverage of individual configura-
tions and individual algorithms at the end of each run.

Configurations — We first start with configurations, i.e.,
pairs of a navigation strategy and a page similarity. Table 9
shows an excerpt of the results with the top two deterministic
and non-deterministic best-performing configurations in each
metric. The complete table is in Table 12 (Appendix). When
looking at the total coverage (code, link, and JS), the random-
ized algorithms, especially the random BFS, are consistently
among the top best-performing configurations. For example,
the randomized BFS covers ranks from five to eight of the
best-performing configurations. It ranks first when collecting
URLs and JavaScript code when using URL comparison, i.e.,
ignoring URL QS values. When switching the page similar-
ity to ¬RTED Tr. 3, the randomized BFS ranks first also in
code coverage. Among the deterministic navigation strategy,
the best-performing configuration is BFS with ¬RTED Tr.
2, ranking only fifth. For link coverage, JAW is second when
used with URL Path Eq. & QS. BFS with ¬RTED Tr. 3 is
ranked first when collecting JavaScript code.

In general, the links and JavaScript metrics are positively
correlated with LoCs, meaning that high coverage in the LoCs
very likely results in a high coverage in the other two met-
rics, too. The pairwise Pearson coefficients and p-values of
Table 12 (Appendix) are 0.5454/8.05E −03 for LoC-Links
and 0.6587/1.59E −65 for LoC-JS.

LoC Links JS
Page Similarity Sum R. +/-% Sum R. +/-% Sum R. +/-%

Block-Mean 220.482 8 -3.1% 186.049 9 -37.6% 23.847 9 -25.2%
Phash 220.451 9 -3.2% 121.267 10 -59.4% 14.383 10 -54.9%
ProCrawl 214.134 10 -3.2% 189.492 8 -36.5% 24.262 8 -23.9%
SimHash 232.092 4 +2.0% 296.302 3 -0.7% 26.415 7 -17.2%
TLSH 240.015 3 +5.4% 265.314 7 -11.1% 31.351 5 -1.7%
URL Eq.(baseline) 227.634 6 - 298.345 2 - 31.902 4 -
URL Path Eq. 221.873 7 -2.5% 276.634 6 -7.3% 28.737 6 -9.9%
URL Path Eq. & QS 230.282 5 +1.2% 338.922 1 +13.6% 33.350 2 +4.5%
¬RTED Tr. 3 240.089 2 +5.5% 288.962 5 -3.1% 34.524 1 +8.2%
¬RTED Tr. 2 242.509 1 +6.5% 292.565 4 -1.9% 33.158 3 +3.9%

Table 7: Average sum coverage, ranking, and % increase over
the baseline of all navigation strategies.

LoC Links JS
Navigation Sum R. +/-% Sum R. +/-% Sum R. +/-%

BFS (baseline) 228.748 3 - 250.373 2 - 27.080 4 -
DFS 226.236 5 -1.1% 248.389 4 -0.8% 27.243 2 +0.6%
FeedEx 214.781 6 -6.1% - - - - - -
JAW 227.983 4 -0.3% 248.247 5 -0.8% 27.139 3 +0.2%

Rnd BFS 247.207 1 +8.1% 280.467 1 +12.0% 32.853 1 +21.3%
Rnd State 228.781 2 0.0% 249.450 3 -0.4% 26.650 5 -1.6%

Table 8: Average coverage and ranking of all page similarity
algorithms.

Individual Algorithms — When looking at the average cov-
erage per algorithm, three page similarity algorithms emerge
as the top performing ones: ¬RTED Tr. 2 for LoCs, URL
Path Eq. & QS for links, and ¬RTED Tr. 3 for script tags,
whereas the worst performing ones are ProCrawl for code
coverage and Phash for both links and JS. Similarly, Rnd BFS
is by far the best-performing algorithm in all metrics. Table 7
and Table 8 show the average code coverage for each page
similarity and navigation technique, respectively.

Total Coverage Increase — We now look at the coverage
increase over the most popular configuration, i.e., BFS and
URL Eq., should one select a different navigation strategy or
page similarity algorithm. The results are in Tables 7 and 8.

In general, five similarity algorithms obtain a better code
coverage than the full URL equality, with a percentage in-
crease ranging from a +1.2% for URL Path Eq. & QS to
+6.5% for ¬RTED Tr. 2 (Table 7). When collecting links and
JavaScript source code, fewer algorithms perform better, how-
ever, with a more evident increase in coverage. For example,
switching to URL Path Eq. & QS can increase, on average,
coverage by 13.6%. When collecting JavaScript code instead,
three similarity algorithms perform better than URL Eq., from
+3.9% for ¬RTED Tr. 2 to +8.2% for ¬RTED Tr. 3. No other
page similarity algorithm helps improve LoCs coverage URL
Eq. We note, however, that algorithms such as Block-Mean,
Phash, and ProCrawl can instead degrade performances sig-
nificantly, especially for links and JavaScript. For example,
Phash can decrease link coverage by more than a half, e.g.,
almost -60%.

When looking at the navigation strategy results (Table 8),

Configuration LoC Links JS

BFS + ¬RTED Tr. 2 245.816 5 298.696 14 31.594 13
BFS + ¬RTED Tr. 3 244.946 9 289.184 20 33.960 7
DFS + ¬RTED Tr. 2 241.565 16 291.458 17 32.372 10
JAW + URL Path Eq. & QS 226.454 30 347.421 2 31.297 15
DFS + URL Path Eq. & QS 229.749 27 328.731 4 30.732 19

Rnd BFS + ¬RTED Tr. 3 259.600 1 313.742 9 41.691 2
Rnd BFS + URL Path Eq. & QS 244.838 10 369.810 1 43.319 1
Rnd BFS + URL Eq. 252.530 3 339.134 3 39.655 3
Rnd BFS + ¬RTED Tr. 2 259.028 2 324.179 6 37.850 4

Table 9: Top two deterministic and non-deterministic best-
performing configurations.

in all cases, switching to random BFS can increase coverage
significantly, with a gain of +8.1%, +12%, and +21% for
code, links and JavaScript coverage. Only FeedEx recorded
a minimum low among the six strategies, with a -6.1% code
coverage. Other strategies have an almost-negligible loss of
performance, i.e., from about -1.6% to -0.3%.

4.2.2 Coverage Growth over Time

Total coverage does not include the temporal dimension and
cannot be used to examine the velocity a crawler can explore
the surface of a site. In this section, we look at the times-
tamped coverage data and calculate the cumulative coverage
over time. We focus only on the two deterministic and non-
deterministic best-performing configurations in each metric
using as a reference point the most common configuration
from our survey, i.e., BFS with URL Eq. (Figure 2). All con-
figurations tend to perform consistently better than BFS with
URL Eq. over time. However, the differences are less appre-
ciable with short crawls, and the breakpoints of these short
crawls vary with the metrics. For example, when collecting
links, the benefits of the selected configurations start being
noticeable after 30 seconds. For JavaScript, the breakpoint
is about 50 seconds, whereas for code coverage is about 100
seconds.

4.3 Coverage Analysis w/ Baselines
We now look at the coverage of each configuration relative
to two baselines to precisely determine the fraction of the
surface covered by crawlers over the most popular algorithms
and against the global coverage.
Increment over Popular Algorithms — In terms of unique
lines of code, the surface discovered by both the baseline
and the configurations ranges from 73.2% by random state
with ¬RTED Tr. 2 to the almost identical overlap of 98.2%
by JAW with URL Eq. When looking at the set differences,
the randomized BFS with ¬RTED Tr. 3 almost includes the
entire baseline with only 0.9% of missed LoCs and, at the
same time, extends it with a considerably large new surface
of about 25.4% of the total.

0 250 500 750 1000 1250 1500 1750 2000
Time (sec)

0

50K

100K

150K

200K

250K

Un

iq
ue

 L
oC

BFS + URL Eq.
BFS + ¬RTED Tr. 2
BFS + ¬RTED Tr. 3
Rnd BFS + ¬RTED Tr. 2
Rnd BFS + ¬RTED Tr. 3

(a) LoC

0 100 200 300 400 500 600
Time (sec)

10K

20K

30K

40K

Un

iq
ue

 Ja
va

Sc
rip

t

BFS + URL Eq.
BFS + ¬RTED Tr. 3
DFS + ¬RTED Tr. 2
Rnd BFS + URL Path Eq. & QS
Rnd BFS + ¬RTED Tr. 3

(b) JavaScript

0 100 200 300 400 500 600
Time (sec)

50K

100K

150K

200K

250K

300K

350K

Un

iq
ue

 L
in

ks

BFS + URL Eq.
JAW + URL Path Eq. & QS
DFS + URL Path Eq. & QS
Rnd BFS + URL Path Eq. & QS
Rnd BFS + URL Eq.

(c) Links

Figure 2: Cumulative coverage over time of the two deterministic and non-deterministic best-performing configurations in each
metric with a baseline on BFS + URL Eq.

The relative coverage over links and JavaScript follows a
different distribution, where the overlaps with the baseline
lose relevance against the differences, i.e., missed and unique
links/scripts. For example, at most, a fifth of the unique links
and JavaScript code is shared with the baseline configuration,
i.e., 8.7% of the baseline surface. The largest overlap is 21.4%
by JAW with URL Eq. The coverage differences between con-
figurations and the baseline are far more significant, covering
from 76% up to 91% of the discovered links and JavaScript
code. Such a stark difference is likely caused by the presence
of dynamically generated links and JavaScript, which are gen-
erated and discovered in one run only, thus being missed by
the others. We explore this aspect later.

Increment over Global Coverage — Similarly to the base-
line coverage, the configurations’ global coverage varies
greatly across metrics. The best-performing configuration
(random BFS with ¬RTED Tr. 3) covers 78.9% of the global
coverage, whereas the worst-performing one (FeedEx with
SimHash) reaches 54.9%. In comparison, the coverage is
significantly lower when counting links and JavaScript. The
best-performing configuration for links and JavaScript (ran-
dom BFS with ¬RTED Tr. 2) is well below the worst LoC
coverage, i.e., 19.4% and 23.8%.

4.3.1 Commonly Discovered Surface

To help interpret coverage results, we look at the coverage
following a resource-centric approach. We count how many
times a configuration run has hit a unique line of code, link,
and script tag. Figure 3 shows the histogram of the number of
hits in a log scale. Live websites contain several dynamically
generated resources, including links and JS code. Dynamic
content deflates total coverage as these links and JS scripts are
unique to one crawling session. These resources are visible in
Figure 3, where more than 1.9M links and 376K scripts were
never visited by more than one crawler. Code coverage shows
slightly different properties. On the one hand, we see also
196K unique lines of code being executed exactly once. These
LoCs can be, for example, instructions regenerating cached
data like UI templates. However, we can also see the dominant
effect of boilerplate code, such as initialization procedures

LoC JavaScript Links
crawls Rnd Det Rnd Det Rnd Det

1 100% 100% 100% 100% 100% 100%

2 +4.76% +2.00% +65.08% +60.34% +62.11% +58.43%
3 +8.14% +3.47% +101.66% +94.51% +95.87% +87.91%

Table 10: Average cumulative increment for the consecutive
re-crawls for random and deterministic configurations.

like loading configuration files and plugins, that is executed
at each HTTP request. At x = 60, we see all configurations
(ten page similarity algorithms × six navigation strategies)
executed 181K unique lines of code.

4.4 Crawling Parameters

Navigating vs no navigating — 273 papers of our survey
stop at the first page during a visit. Increasing the limit to
two pages, the average coverage increases by +29.34% new
lines of code, +101.96% new links, and +83.65% for LoCs,
links, and JavaScript code, respectively. When pushing the
limit to 10 pages, we observe a more significant increase of
+100.91%, +253.95%, and +194.36%. Figure 4 shows the
cumulative increment of coverage over the number of visited
pages up to 50 pages.

Single- vs re-crawling — Table 10 shows that additional
re-crawls are likely to increase coverage across all metrics.
Moreover, on average, randomized algorithms gained a more
significant increase in comparison to deterministic ones.

5 Discussion

5.1 Lesson learned
5.1.1 Significant Challenges to Reimplementations

Our systematization in Section 2 showed a rather complex
landscape in presenting the methodology, mostly character-
ized by scattered and incomplete descriptions, which ulti-
mately affected our reimplementation.

0 10 20 30 40 50 60
of hits

1K

10K

100K

Un

iq
ue

 L
oC

(a) LoC

0 10 20 30 40 50
of hits

1K

10K

100K

Un

iq
ue

 Ja
va

Sc
rip

t

(b) JavaScript

0 10 20 30 40
of hits

100

1K

10K

100K

1M

Un

iq
ue

 L
in

ks

(c) Links

Figure 3: Distribution of the number of times an element, e.g., unique line of code, link, and script, is hit by a configuration run.

0 2 10 20 30 40 50
The number of visited pages

0

100

200

300

400

In
cr

ea
se

 (%
)

JavaScript
Links
Code coverage

Figure 4: Cumulative increment percentage over the number
of visited pages.

#1 - Insufficient descriptions — Insufficient descriptions
occur in many papers and manifest themselves differently. The
first one is not specifying all parameters, including the specific
algorithms used in a study. In total, our review of large-scale
studies in Section 2.1 shows that 38, 29, 34, 25, and 196
papers did not specify, respectively, the navigation strategy,
page similarity, navigation depth, navigation limits, and page
load waiting time (See Table 1). The second one is insufficient
or missing details of crawling algorithms. For example, our
systematization of existing algorithms in Section 2.2 could
not determine the algorithms of 24 papers.

#2 - Scattered and heterogeneous descriptions — The sec-
ond insight of our survey is that the text describing the crawler
configuration or other parameters is scattered across the pa-
pers, making their localization hard and an error-prone task.
Here, we welcome standardized, well-marked areas of a paper
describing the methodology and algorithms in papers.

#3 - Lack of code and algorithmic details — We could not
integrate ten of the analyzed algorithms into Arachnarium as
we could not reimplement them. The main reason was the lack
of sufficient details in the text and the source code’s absence
to attempt a new implementation. We strongly encourage our
community to adopt even more stringent publication rules
where source code and artifacts accompanying research be-
come the norm, not the exception.

5.1.2 No Winner, Complex Landscape

Our results revealed a rather complex landscape, with ran-
domized algorithms generally performing better.

#4 - Commonly used algorithms do not perform the best —
URL Eq. is a commonly used page similarity algorithm that
does not rank first in any metric. On average, switching to
¬RTED Tr. 2can improve coverage for LoCs (+6.5%), URL
Path Eq. for links (+13.6%), and ¬RTED Tr. 3 for JavaScript
(+8.2%). On the other hand, BFS is the commonly used nav-
igation strategy, which also does not rank first on average.
Switching to the randomized version, we observe an increase
from +8.1% (LoCs) to +21.3% (JS).

#5 - No outperforming configuration — Our results show
that no single configuration ranked first on both absolute and
global coverage metrics. However, randomized BFS com-
bined with many page similarity algorithms is consistently
among the top-performing configurations.

#6 - Randomized navigation is a good choice also with
limited resources — 36 large-scale web measurements used
randomized visit strategy with strict navigation limits to col-
lect resources from a landing page under limited time con-
straints, e.g., five links only. Our results indicate that such a
data collection strategy allows us to balance coverage well
with the given resources.

#7 - Algorithms not suited for the job — Our results also
identified algorithms performing poorly across all metrics,
especially for live crawls. Examples are Phash, ProCrawl,
Block-Mean. Results also suggest that SimHash may be unfit
when collecting JavaScript source code. Among the crawling
strategy, FeedEx, which combines a coverage-driven metric,
ranked last with a -13.11% from random BFS.
#8 - Crawling with metrics — We observed that crawler
configurations perform differently across the metrics, and
we recommend selecting the algorithm based on the targeted
metrics.
#9 - Crawling with limited resources — Running crawlers
takes, in general, time and computing resources. With a tight
budget, e.g., crawling sessions below 30, 50, and 100 seconds,
we notice that the algorithm choice does not significantly
affect coverage. However, we note that coverage can dramati-
cally improve by using a navigation technique with a depth

of five or more.
#10 - No crawling — Most papers, i.e., 168, that do not
navigate pages work on attack or defense techniques against
website fingerprinting and online tracking and collect HTTP
headers. For these papers, crawling could have provided more
sample variety. However, crawling live websites can be ex-
pensive, and authors often need to balance the number of
websites of their study and navigation depth to keep the data
collection manageable. Most of these works also discuss such
a decision and the impact on the results, scope, and conclu-
sions. Here, our empirical measurement of coverage over the
number of visited pages estimates the coverage loss for these
methodologic choices.

5.1.3 Future Directions

Not having a silver-bullet solution indicates that new efforts
in creating better crawling techniques are needed.

#11 - Alternatives to crawling are unexplored — Crawlers
are not the only approach that could be used to explore web-
sites. For example, over the past decades, many UI testing
approaches have been proposed (e.g., [26, 54]) where they
tend to reason on the UI structure and logic to explore deeper
behaviors. Prior work has shown improvement over random
test generation [26]; however, these techniques have not been
used in web measurements yet, and their potential and impact
are largely unexplored.

#12 - No better than random crawling — Perhaps, the most
disappointing result is that randomized strategies performed,
in average, better than all other techniques, including security
testing tools. That suggests that, despite the efforts, visiting
with random clicks performs better than current heuristics.
Not being better than random algorithms calls for additional
efforts to devise and build better crawling algorithms. At the
same time, our results indicate that randomized algorithms
should be included in all evaluations when proposing a new
technique to precisely measure when a new idea achieves a
significant and relevant result.

#13 - Security testing tools lag behind — None of the
commercial-grade security testing tools are at par with the
crawler configurations. The best-performing tool is Arachni,
which ranked 38th in code coverage whereas (-24.5% from
the first, i.e., random BFS with ¬RTED Tr. 3), by contrast,
ZAP ranked last, i.e., 63rd (-33% from the first).

#14 - New web application surface as a shared contribu-
tion — We can also observe interesting properties of the
current state-of-the-art of web crawling in global coverage.
The total number of lines of code discovered at least by two
configurations is 87% (non-unique LoC). Interestingly, for
the remaining 13%, no two crawlers discovered it, suggesting
that this fraction results from the union of disjoint, unique
capabilities of each algorithm.

5.2 Ethical Considerations and Threat to Va-
lidity

Ethical Considerations — Our experiments intend to pro-
vide a better view of crawler behavior in real-world scenarios.
However, automated interaction with public-facing websites
necessitates careful risk evaluation. We anticipated three pos-
sible risks.

The first risk is the accidental collection of PIIs in web-
pages and URLs. Our crawlers visit webpages that can be
reached by any human user when browsing the public, unau-
thenticated pages of a website with a browser. Our crawlers
neither forge URL strings nor log in and stay on the website,
thus minimizing the risk of collecting sensitive data. The risk
of collecting PIIs is further reduced by the types of websites
used in our study and by our sampling strategy. The top 10K
CrUX tends to contain websites of global corporations, which
are unlikely to store PIIs in webpages or URLs in public pages
reachable from a homepage. In addition, we did not collect
pages from all top 10K sites but from a random sample of 2K
sites, further mitigating the risk of collecting PIIs accidentally.

Second, our experiments collected web pages via hundreds
of crawler runs, which can flood websites with thousands of
requests per second. To avoid hampering website availability,
we implemented in Arachnarium the following constraints:
(i) Arachnarium runs at most 12 concurrent crawlers, (ii)
two crawlers cannot visit the same domain in parallel, (iii)
each crawler runs in a single-thread and single-browser mode,
executing actions sequentially, not concurrently, and (iv) each
action is executed every 0.5s. ASN-based checks can further
mitigate the risk of flooding smaller websites; however, small
sites are unlikely to be in our dataset as the top 10K CrUX
tends to contain globally available sites, using robust hosting,
network, and CDN providers, e.g., top shared ASNs of our 2K
dataset include Cloudflare, Amazon, and Akamai. As smaller
websites are more likely to be present in low-ranked domains,
researchers wanting to repeat our experiments on those sites
should avoid running two crawlers against sites hosted by the
same provider.

The third risk is collecting content website owners want to
avoid being indexed and shared, e.g., the price of products,
and they can specify their policy in robots.txt. However,
our crawlers collect and extract URLs and script tags from the
HTML code and do not index and share web content. Hence,
when considering the interaction between harm and benefits
of our work, we concluded that not honoring robots.txt
was an acceptable trade-off in this specific instance, given the
precautions we took.

Finally, the artifacts that we will share with the community
will not contain the raw data collected (URLs or code, which
are subject to removal from our systems) but redacted data,
i.e., SHA256 hashes of URLs.

Threat to Validity — The DS1 dataset contains 11 web
applications, three orders of magnitude smaller than the 2K

websites in DS2. Confirming the full generalizability of our
experiments requires expanding the DS1 dataset, which is
hard to do at scale. We mitigated this external validity threat
by selecting web applications that are relevant and real-size,
e.g., WordPress, Joomla, and Drupal, and used in the litera-
ture [20,25,80]. Similarly, our evaluation used three coverage
metrics, and future researchers can already use our results
when planning their experiments. While we observed a strong
correlation between LoC and link and JS coverage, the corre-
lation may not hold for other metrics, and additional exper-
iments with new metrics are needed. However, to minimize
this risk, we designed Arachnarium to be extendable and
configurable, providing a platform for researchers to select
experimental parameters. Finally, Figure 3 shows a large frac-
tion of JavaScript and links, each discovered by one crawler
run. These links and JavaScript code are likely temporary,
e.g., dynamically generated links, which can result in over-
estimating the covered and missed surface.

6 Related Works

Crawler evaluations — To the best of our knowledge, this
is the first systematization of knowledge on crawlers and
their impact on security measurements. The two closest prior
works to ours are Yandrapally et al. [80] and Ahmad et al. [4].
Yandrapally et al. [80] evaluated different page similarity algo-
rithms selected from different domains: information retrieval,
web testing, and computer vision. Our work differs in two
main aspects. First, we cover both page similarity algorithms
and navigation strategies, exploring their combinations. Sec-
ond, we consider algorithms that are used in practice. Ahmad
et al. [4] evaluated a mix of crawlers, e.g., GNU Wget and
ZAP, and web automation tools, e.g., Selenium and Puppeteer,
focusing on aspects such as the ability to manipulate HTTP
parameters or disabling cookies. As opposed to this work, our
paper focuses on the algorithmic nature of crawlers, looking
at their ability to find and identify pages, i.e., via navigation
and page de-duplication, also exploring their combinations.

Prior works [20, 25, 61] evaluate the presented tool against
the other tools, e.g., Black Widow is tested against Skipfish,
w3af and ZAP, using different testbeds, parameters, and met-
rics. While these evaluations show us the performance of one
tool against the other, results can hardly be transferred across
papers. Our paper addresses this issue by proposing a compar-
ative evaluation framework, Arachnarium, that can be used
to define and execute reproducible experiments against web
applications..
Reproducibility in web measurements — Reproducibil-
ity in web measurements is an open problem. For example,
Jueckstock et al. [34] and Demir et al. [16] pointed out that
reproducing prior measurements is hard in practice, whereas
Hantke et al. [29] showed that web archives could be used to
reproduce web security results. As opposed to these works,
our paper does not reproduce prior works. Instead, it intends to

evaluate the adequacy of the algorithms used to collect data in
web measurements and provide insights to future researchers
to help select the parameters of their studies.
Alternatives to crawling — Crawling is one of the many dy-
namic analysis techniques that could be used in web measure-
ments, including both white-box and black-box approaches.
Unfortunately, white-box approaches such as [5, 8, 9] require
the server-side source code for the analysis, which is not avail-
able in practice. On the other hand, black-box approaches do
not require the source code and, like crawlers, implement a
variety of heuristics to explore and test the target web applica-
tion. Among those, a line of work closely related to crawlers
is UI testing, where many automated approaches have been
proposed to test UIs for functional errors (e.g., [26, 54]. The
goal of our study is to systematize and test techniques that are
used in empirical studies. Our survey could not find the use
of UI testing approaches; therefore, we did not consider them
in our study.

7 Conclusion

This paper presents a systematization of knowledge about
web crawling algorithms for web security measurements. Af-
ter identifying and analyzing 403 papers from top venues
in security, privacy, web, and measurements, and 27 papers
from the top venues in software engineering, we created a
taxonomy with 35 algorithms and mapped their use in empir-
ical analyses. Then, we proposed and used Arachnarium, a
framework for comparative analysis of crawlers, in a compre-
hensive empirical evaluation of proposed crawling techniques
and parameters. From our systematization and evaluation, we
distilled 14 insights, lessons learned, and recommendations
for our community and future researchers.

Acknowledgments

This work received funding from the European Union’s Hori-
zon 2020 research and innovation programme under the
TESTABLE project (grant agreement 101019206), and the
Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation, project number 452850842).

References
[1] Chrome User Experience Report. https://developer.chrome.com/

docs/crux/.

[2] Puppeteer. https://github.com/puppeteer/puppeteer.

[3] Selenium Browser Automation. https://www.seleniumhq.org/.

[4] Syed Suleman Ahmad, Muhammad Daniyal Dar, Muhammad Fareed
Zaffar, Narseo Vallina-Rodriguez, and Rishab Nithyanand. Apophanies
or epiphanies? how crawlers impact our understanding of the web. In
Proceedings of The Web Conference 2020, pages 271–280, 2020.

[5] Abeer Alhuzali, Rigel Gjomemo, Birhanu Eshete, and V.N. Venkatakr-
ishnan. NAVEX: Precise and scalable exploit generation for dynamic

https://developer.chrome.com/docs/crux/
https://developer.chrome.com/docs/crux/
https://github.com/puppeteer/puppeteer
https://www.seleniumhq.org/

web applications. In 27th USENIX Security Symposium (USENIX Se-
curity 18), pages 377–392, Baltimore, MD, August 2018. USENIX
Association.

[6] Waqar Aqeel, Balakrishnan Chandrasekaran, Anja Feldmann, and
Bruce M. Maggs. On landing and internal web pages: The strange case
of jekyll and hyde in web performance measurement. In Proceedings
of the ACM Internet Measurement Conference, IMC ’20, page 680–695,
New York, NY, USA, 2020. Association for Computing Machinery.

[7] Shay Artzi, Julian Dolby, Simon Holm Jensen, Anders Møller, and
Frank Tip. A framework for automated testing of javascript web ap-
plications. In Proceedings of the 33rd International Conference on
Software Engineering, ICSE ’11, page 571–580, New York, NY, USA,
2011. Association for Computing Machinery.

[8] Shay Artzi, Adam Kiezun, Julian Dolby, Frank Tip, Daniel Dig, Amit
Paradkar, and Michael D Ernst. Finding bugs in web applications
using dynamic test generation and explicit-state model checking. IEEE
Transactions on Software Engineering, 36(4):474–494, 2010.

[9] Davide Balzarotti, Marco Cova, Vika Felmetsger, Nenad Jovanovic,
Engin Kirda, Christopher Kruegel, and Giovanni Vigna. Saner: Com-
posing static and dynamic analysis to validate sanitization in web
applications. In 2008 IEEE Symposium on Security and Privacy (sp
2008), pages 387–401. IEEE, 2008.

[10] Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse, and Geoffrey
Zweig. Syntactic clustering of the web. Computer Networks and ISDN
Systems, 29(8):1157–1166, 1997. Papers from the Sixth International
World Wide Web Conference.

[11] Stefano Calzavara, Riccardo Focardi, Matteo Maffei, Clara Schnei-
dewind, Marco Squarcina, and Mauro Tempesta. WPSE: Fortifying
web protocols via Browser-Side security monitoring. In 27th USENIX
Security Symposium (USENIX Security 18), pages 1493–1510, Balti-
more, MD, August 2018. USENIX Association.

[12] Stefano Calzavara, Alvise Rabitti, and Michele Bugliesi. Content secu-
rity problems? evaluating the effectiveness of content security policy
in the wild. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’16, page 1365–1375,
New York, NY, USA, 2016. Association for Computing Machinery.

[13] Paul T. Chiou, Ali S. Alotaibi, and William G. J. Halfond. Detecting
and localizing keyboard accessibility failures in web applications. In
Proceedings of the 29th ACM Joint Meeting on European Software En-
gineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE 2021, page 855–867, New York, NY, USA,
2021. Association for Computing Machinery.

[14] Shauvik Roy Choudhary, Mukul R. Prasad, and Alessandro Orso. Cross-
check: Combining crawling and differencing to better detect cross-
browser incompatibilities in web applications. In 2012 IEEE Fifth
International Conference on Software Testing, Verification and Valida-
tion, pages 171–180, 2012.

[15] Valter Crescenzi, Paolo Merialdo, and Paolo Missier. Clustering web
pages based on their structure. Data Knowl. Eng., 54(3):279–299, sep
2005.

[16] Nurullah Demir, Matteo Große-Kampmann, Tobias Urban, Christian
Wressnegger, Thorsten Holz, and Norbert Pohlmann. Reproducibility
and replicability of web measurement studies. In Proceedings of the
ACM Web Conference 2022, pages 533–544, 2022.

[17] G.A. Di Lucca, M. Di Penta, and A.R. Fasolino. An approach to iden-
tify duplicated web pages. In Proceedings 26th Annual International
Computer Software and Applications, pages 481–486, 2002.

[18] Giuseppe Antonio Di Lucca, Massimiliano Di Penta, Anna Rita Fa-
solino, and Pasquale Granato. Clone analysis in the web era: An
approach to identify cloned web pages. In Seventh Workshop on Em-
pirical Studies of Software Maintenance, volume 107, 2001.

[19] Vladan Djeric and Ashvin Goel. Securing Script-Based extensibility in
web browsers. In 19th USENIX Security Symposium (USENIX Security
10), Washington, DC, August 2010. USENIX Association.

[20] Adam Doupé, Ludovico Cavedon, Christopher Kruegel, and Giovanni
Vigna. Enemy of the state: A State-Aware Black-Box web vulnerability
scanner. In 21st USENIX Security Symposium (USENIX Security 12),
pages 523–538, Bellevue, WA, August 2012. USENIX Association.

[21] Kostas Drakonakis, Sotiris Ioannidis, and Jason Polakis. The cookie
hunter: Automated black-box auditing for web authentication and au-
thorization flaws. In Proceedings of the 2020 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’20, page 1953–1970,
New York, NY, USA, 2020. Association for Computing Machinery.

[22] Fabien Duchene, Sanjay Rawat, Jean-Luc Richier, and Roland Groz.
Kameleonfuzz: Evolutionary fuzzing for black-box xss detection. In
Proceedings of the 4th ACM Conference on Data and Application
Security and Privacy, CODASPY ’14, page 37–48, New York, NY,
USA, 2014. Association for Computing Machinery.

[23] Fabien Duchène, Sanjay Rawat, Jean-Luc Richier, and Roland Groz.
Ligre: Reverse-engineering of control and data flow models for black-
box xss detection. In 2013 20th Working Conference on Reverse
Engineering (WCRE), pages 252–261, 2013.

[24] Steven Englehardt and Arvind Narayanan. Online tracking: A 1-million-
site measurement and analysis. In Proceedings of the 2016 ACM
SIGSAC conference on computer and communications security, pages
1388–1401, 2016.

[25] Benjamin Eriksson, Giancarlo Pellegrino, and Andrei Sabelfeld. Black
widow: Blackbox data-driven web scanning. In 2021 IEEE Symposium
on Security and Privacy (SP), pages 1125–1142, 2021.

[26] Markus Ermuth and Michael Pradel. Monkey see, monkey do: Effective
generation of gui tests with inferred macro events. In Proceedings of
the 25th International Symposium on Software Testing and Analysis,
pages 82–93, 2016.

[27] Amin Milani Fard and Ali Mesbah. Feedback-directed exploration of
web applications to derive test models. In 2013 IEEE 24th International
Symposium on Software Reliability Engineering (ISSRE), pages 278–
287, 2013.

[28] Dennis Fetterly, Mark Manasse, and Marc Najork. On the evolution
of clusters of near-duplicate web pages. In Proceedings of the First
Conference on Latin American Web Congress, LA-WEB ’03, page 37,
USA, 2003. IEEE Computer Society.

[29] Florian Hantke, Stefano Calzavara, Moritz Wilhelm, Alvise Rabitti,
and Ben Stock. You call this archaeology? evaluating web archives for
reproducible web security measurements. In ACM CCS, 2023.

[30] Monika Henzinger. Finding near-duplicate web pages: A large-scale
evaluation of algorithms. In Proceedings of the 29th Annual Inter-
national ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’06, page 284–291, New York, NY, USA,
2006. Association for Computing Machinery.

[31] Geng Hong, Zhemin Yang, Sen Yang, Lei Zhang, Yuhong Nan, Zhibo
Zhang, Min Yang, Yuan Zhang, Zhiyun Qian, and Haixin Duan. How
you get shot in the back: A systematical study about cryptojacking in
the real world. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’18, page 1701–1713,
New York, NY, USA, 2018. Association for Computing Machinery.

[32] Solomon Hykes. Docker. https://www.docker.com/.

[33] Luca Invernizzi, Kurt Thomas, Alexandros Kapravelos, Oxana Co-
manescu, Jean Michel Picod, and Elie Bursztein. Cloak of visibility:
Detecting when machines browse a different web. In IEEE Symposium
on Security and Privacy, SP 2016, San Jose, CA, USA, May 22-26,
2016, pages 743–758. IEEE Computer Society, 2016.

[34] Jordan Jueckstock, Shaown Sarker, Peter Snyder, Aidan Beggs, Panagio-
tis Papadopoulos, Matteo Varvello, Benjamin Livshits, and Alexandros
Kapravelos. Towards realistic and reproducible web crawl measure-
ments. In Proceedings of the Web Conference 2021, pages 80–91,
2021.

https://www.docker.com/

[35] Jordan Jueckstock, Peter Snyder, Shaown Sarker, Alexandros Kaprave-
los, and Benjamin Livshits. Measuring the privacy vs. compatibility
trade-off in preventing third-party stateful tracking. In Proceedings of
the ACM Web Conference 2022, WWW ’22, page 710–720, New York,
NY, USA, 2022. Association for Computing Machinery.

[36] Stefan Kals, Engin Kirda, Christopher Kruegel, and Nenad Jovanovic.
Secubat: A web vulnerability scanner. In Proceedings of the 15th Inter-
national Conference on World Wide Web, WWW ’06, page 247–256,
New York, NY, USA, 2006. Association for Computing Machinery.

[37] Soheil Khodayari and Giancarlo Pellegrino. JAW: Studying client-side
CSRF with hybrid property graphs and declarative traversals. In 30th
USENIX Security Symposium (USENIX Security 21), pages 2525–2542.
USENIX Association, August 2021.

[38] Soheil Khodayari and Giancarlo Pellegrino. The state of the samesite:
Studying the usage, effectiveness, and adequacy of samesite cookies. In
43rd IEEE Symposium on Security and Privacy, SP 2022, San Francisco,
CA, USA, May 22-26, 2022, pages 1590–1607. IEEE, 2022.

[39] I Luk Kim, Weihang Wang, Yonghwi Kwon, Yunhui Zheng, Yousra
Aafer, Weijie Meng, and Xiangyu Zhang. Adbudgetkiller: Online
advertising budget draining attack. In Proceedings of the 2018 World
Wide Web Conference, WWW ’18, page 297–307, Republic and Canton
of Geneva, CHE, 2018. International World Wide Web Conferences
Steering Committee.

[40] Taeri Kim, Noseong Park, Jiwon Hong, and Sang-Wook Kim. Phish-
ing url detection: A network-based approach robust to evasion. In
Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’22, page 1769–1782, New York, NY,
USA, 2022. Association for Computing Machinery.

[41] Brian Kondracki, Babak Amin Azad, Oleksii Starov, and Nick Niki-
forakis. Catching transparent phish: Analyzing and detecting mitm
phishing toolkits. In Proceedings of the 2021 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS ’21, page 36–50,
New York, NY, USA, 2021. Association for Computing Machinery.

[42] Radhesh Krishnan Konoth, Emanuele Vineti, Veelasha Moonsamy,
Martina Lindorfer, Christopher Kruegel, Herbert Bos, and Giovanni
Vigna. Minesweeper: An in-depth look into drive-by cryptocurrency
mining and its defense. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’18, page
1714–1730, New York, NY, USA, 2018. Association for Computing
Machinery.

[43] Tasos Laskos. Arachni. https://www.arachni-scanner.com/.

[44] Mathias Lecuyer, Riley Spahn, Yannis Spiliopolous, Augustin Chain-
treau, Roxana Geambasu, and Daniel Hsu. Sunlight: Fine-grained
targeting detection at scale with statistical confidence. In Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS ’15, page 554–566, New York, NY, USA, 2015.
Association for Computing Machinery.

[45] Sebastian Lekies, Ben Stock, and Martin Johns. 25 million flows later:
large-scale detection of dom-based xss. In Proceedings of the 2013
ACM SIGSAC Conference on Computer & Communications Security,
CCS ’13, page 1193–1204, New York, NY, USA, 2013. Association
for Computing Machinery.

[46] Sebastian Lekies, Ben Stock, Martin Wentzel, and Martin Johns. The
unexpected dangers of dynamic JavaScript. In 24th USENIX Security
Symposium (USENIX Security 15), pages 723–735, Washington, D.C.,
August 2015. USENIX Association.

[47] Pavel Lifshits, Roni Forte, Yedid Hoshen, Matt Halpern, Manuel Phili-
pose, Mohit Tiwari, and Mark Silberstein. Power to peep-all: Inference
attacks by malicious batteries on mobile devices. PoPETs, 2018(4):141–
158, 2018.

[48] Gurmeet Singh Manku, Arvind Jain, and Anish Das Sarma. Detecting
near-duplicates for web crawling. In Proceedings of the 16th Interna-
tional Conference on World Wide Web, WWW ’07, page 141–150, New
York, NY, USA, 2007. Association for Computing Machinery.

[49] Leonardo Mariani, Mauro Pezze, Oliviero Riganelli, and Mauro San-
toro. Autoblacktest: Automatic black-box testing of interactive ap-
plications. In 2012 IEEE Fifth International Conference on Software
Testing, Verification and Validation, pages 81–90, 2012.

[50] Abner Mendoza, Phakpoom Chinprutthiwong, and Guofei Gu. Uncov-
ering http header inconsistencies and the impact on desktop/mobile
websites. In Proceedings of the 2018 World Wide Web Conference,
WWW ’18, page 247–256, Republic and Canton of Geneva, CHE, 2018.
International World Wide Web Conferences Steering Committee.

[51] Ali Mesbah, Engin Bozdag, and Arie van Deursen. Crawling ajax by
inferring user interface state changes. In 2008 Eighth International
Conference on Web Engineering, pages 122–134, 2008.

[52] Ali Mesbah, Arie van Deursen, and Stefan Lenselink. Crawling ajax-
based web applications through dynamic analysis of user interface state
changes. ACM Trans. Web, 6(1), mar 2012.

[53] Ali Mesbah, Arie van Deursen, and Danny Roest. Invariant-based
automatic testing of modern web applications. IEEE Transactions on
Software Engineering, 38(1):35–53, 2012.

[54] Amin Milani Fard, Mehdi Mirzaaghaei, and Ali Mesbah. Leveraging
existing tests in automated test generation for web applications. In Pro-
ceedings of the 29th ACM/IEEE international conference on Automated
software engineering, pages 67–78, 2014.

[55] Seyed Ali Mirheidari, Sajjad Arshad, Kaan Onarlioglu, Bruno Crispo,
Engin Kirda, and William Robertson. Cached and confused: Web cache
deception in the wild. In 29th USENIX Security Symposium (USENIX
Security 20), pages 665–682. USENIX Association, August 2020.

[56] Nick Nikiforakis, Luca Invernizzi, Alexandros Kapravelos, Steven
Van Acker, Wouter Joosen, Christopher Kruegel, Frank Piessens, and
Giovanni Vigna. You are what you include: large-scale evaluation of
remote javascript inclusions. In Proceedings of the 2012 ACM Con-
ference on Computer and Communications Security, CCS ’12, page
736–747, New York, NY, USA, 2012. Association for Computing Ma-
chinery.

[57] Hrvoje Nikšić. GNU Wget. https://www.gnu.org/software/
wget/.

[58] Xiang Pan, Yinzhi Cao, and Yan Chen. I do not know what you visited
last summer: Protecting users from stateful third-party web tracking
with trackingfree browser. In 22nd Annual Network and Distributed
System Security Symposium, NDSS 2015, San Diego, California, USA,
February 8-11, 2015. The Internet Society, 2015.

[59] Xiang Pan, Yinzhi Cao, Shuangping Liu, Yu Zhou, Yan Chen, and
Tingzhe Zhou. Cspautogen: Black-box enforcement of content se-
curity policy upon real-world websites. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security,
CCS ’16, page 653–665, New York, NY, USA, 2016. Association for
Computing Machinery.

[60] Mateusz Pawlik and Nikolaus Augsten. Tree edit distance: Robust and
memory-efficient. Information Systems, 56:157–173, 2016.

[61] Giancarlo Pellegrino, Constantin Tschürtz, Eric Bodden, and Christian
Rossow. jäk: Using dynamic analysis to crawl and test modern web
applications. In Herbert Bos, Fabian Monrose, and Gregory Blanc,
editors, Research in Attacks, Intrusions, and Defenses, pages 295–316,
Cham, 2015. Springer International Publishing.

[62] Victor Le Pochat, Tom van Goethem, Samaneh Tajalizadehkhoob, Ma-
ciej Korczynski, and Wouter Joosen. Tranco: A research-oriented top
sites ranking hardened against manipulation. In 26th Annual Network
and Distributed System Security Symposium, NDSS 2019, San Diego,
California, USA, February 24-27, 2019. The Internet Society, 2019.

[63] Ram Sundara Raman, Adrian Stoll, Jakub Dalek, Reethika Ramesh,
Will Scott, and Roya Ensafi. Measuring the deployment of network cen-
sorship filters at global scale. In 27th Annual Network and Distributed
System Security Symposium, NDSS 2020, San Diego, California, USA,
February 23-26, 2020. The Internet Society, 2020.

https://www.arachni-scanner.com/
https://www.gnu.org/software/wget/
https://www.gnu.org/software/wget/

[64] Derick Rethans. Xdebug - Debugger and Profiler Tool for PHP. https:
//xdebug.org/.

[65] Andres Riancho. w3af - Open Source Web Application Security Scan-
ner. http://w3af.org/.

[66] Kimberly Ruth, Deepak Kumar, Brandon Wang, Luke Valenta, and Za-
kir Durumeric. Toppling top lists: Evaluating the accuracy of popular
website lists. In Proceedings of the 22nd ACM Internet Measurement
Conference, IMC ’22, page 374–387, New York, NY, USA, 2022. As-
sociation for Computing Machinery.

[67] Matthias Schur, Andreas Roth, and Andreas Zeller. Procrawl: Mining
test models from multi-user web applications. In Proceedings of the
2014 International Symposium on Software Testing and Analysis, IS-
STA 2014, page 413–416, New York, NY, USA, 2014. Association for
Computing Machinery.

[68] Asuman Senol, Gunes Acar, Mathias Humbert, and Fred-
erik Zuiderveen Borgesius. Leaky forms: A study of email
and password exfiltration before form submission. In 31st USENIX
Security Symposium (USENIX Security 22), pages 1813–1830, Boston,
MA, August 2022. USENIX Association.

[69] Anatoly Shusterman, Ayush Agarwal, Sioli O’Connell, Daniel Genkin,
Yossi Oren, and Yuval Yarom. Prime+Probe 1, JavaScript 0: Overcom-
ing browser-based Side-Channel defenses. In 30th USENIX Security
Symposium (USENIX Security 21), pages 2863–2880. USENIX Asso-
ciation, August 2021.

[70] Pratik Soni, Enrico Budianto, and Prateek Saxena. The SICILIAN de-
fense: Signature-based whitelisting of web javascript. In Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS ’15, page 1542–1557, New York, NY, USA, 2015.
Association for Computing Machinery.

[71] Marco Squarcina, Mauro Tempesta, Lorenzo Veronese, Stefano
Calzavara, and Matteo Maffei. Can i take your subdomain? exploring
Same-Site attacks in the modern web. In 30th USENIX Security Sympo-
sium (USENIX Security 21), pages 2917–2934. USENIX Association,
August 2021.

[72] Marius Steffens, Christian Rossow, Martin Johns, and Ben Stock. Don’t
trust the locals: Investigating the prevalence of persistent client-side
cross-site scripting in the wild. In 26th Annual Network and Distributed
System Security Symposium, NDSS 2019, San Diego, California, USA,
February 24-27, 2019. The Internet Society, 2019.

[73] Karthika Subramani, William Melicher, Oleksii Starov, Phani Vadrevu,
and Roberto Perdisci. Phishinpatterns: Measuring elicited user interac-
tions at scale on phishing websites. In Proceedings of the 22nd ACM
Internet Measurement Conference, IMC ’22, page 589–604, New York,
NY, USA, 2022. Association for Computing Machinery.

[74] Nicolas Surribas. Wapiti. https://github.com/wapiti-scanner/
wapiti.

[75] Janos Szurdi, Balazs Kocso, Gabor Cseh, Jonathan Spring, Mark Fele-
gyhazi, and Chris Kanich. The long “Taile” of typosquatting domain
names. In 23rd USENIX Security Symposium (USENIX Security 14),
pages 191–206, San Diego, CA, August 2014. USENIX Association.

[76] ZAP Dev Team. OWASP Zed Attack Proxy. https://www.zaproxy.
org/.

[77] David Y. Wang, Stefan Savage, and Geoffrey M. Voelker. Cloak and
dagger: Dynamics of web search cloaking. In Proceedings of the 18th
ACM Conference on Computer and Communications Security, CCS ’11,
page 477–490, New York, NY, USA, 2011. Association for Computing
Machinery.

[78] Lukas Weichselbaum, Michele Spagnuolo, Sebastian Lekies, and Artur
Janc. CSP is dead, long live csp! on the insecurity of whitelists and
the future of content security policy. In Proceedings of the 2016 ACM

SIGSAC Conference on Computer and Communications Security, CCS
’16, page 1376–1387, New York, NY, USA, 2016. Association for
Computing Machinery.

[79] Tarun Kumar Yadav, Akshat Sinha, Devashish Gosain, Piyush Kumar
Sharma, and Sambuddho Chakravarty. Where the light gets in: An-
alyzing web censorship mechanisms in india. In Proceedings of the
Internet Measurement Conference 2018, IMC ’18, page 252–264, New
York, NY, USA, 2018. Association for Computing Machinery.

[80] Rahulkrishna Yandrapally, Andrea Stocco, and Ali Mesbah. Near-
duplicate detection in web app model inference. In Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering,
ICSE ’20, page 186–197, New York, NY, USA, 2020. Association for
Computing Machinery.

[81] Ronghai Yang, Xianbo Wang, Cheng Chi, Dawei Wang, Jiawei He, Sim-
ing Pang, and Wing Cheong Lau. Scalable detection of promotional
website defacements in black hat SEO campaigns. In 30th USENIX Se-
curity Symposium (USENIX Security 21), pages 3703–3720. USENIX
Association, August 2021.

[82] Michal Zalewski. Skipfish. https://code.google.com/archive/
p/skipfish/.

[83] Eric Zeng, Rachel McAmis, Tadayoshi Kohno, and Franziska Roesner.
What factors affect targeting and bids in online advertising? a field
measurement study. In Proceedings of the 22nd ACM Internet Mea-
surement Conference, IMC ’22, page 210–229, New York, NY, USA,
2022. Association for Computing Machinery.

[84] Eric Zeng, Miranda Wei, Theo Gregersen, Tadayoshi Kohno, and
Franziska Roesner. Polls, clickbait, and commemorative $2 bills: Prob-
lematic political advertising on news and media websites around the
2020 u.s. elections. In Proceedings of the 21st ACM Internet Measure-
ment Conference, IMC ’21, page 507–525, New York, NY, USA, 2021.
Association for Computing Machinery.

[85] Yan Zheng, Yi Liu, Xiaofei Xie, Yepang Liu, Lei Ma, Jianye Hao, and
Yang Liu. Automatic web testing using curiosity-driven reinforcement
learning. In Proceedings of the 43rd International Conference on
Software Engineering, ICSE ’21, page 423–435. IEEE Press, 2021.

A Appendix

A.1 Classification of the Identified Approaches
Table 11 shows a classification of the identified building block
algorithms.

A.2 Excluded Algorithms
This section presents the reasons why we could not implement
certain crawling algorithms.
AutoBlackTest, KAFE, Dagger, and LigRE do not specify

which DOM elements are used or filtered to determine simi-
larity. WebExplor and Fetterly et al [28] provided insufficient
details on the algorithm application. Lucca et al. [17, 18]
and Broder et al. [10] do not specify the threshold used in
the similarity algorithms. Artemis does not provide enough
parameters to reimplement the algorithm without the source
code. We also could not modify our reference implementation
to accomodate the state clustering approach used in Crescenzi
et al. [15].

https://xdebug.org/
https://xdebug.org/
http://w3af.org/
https://github.com/wapiti-scanner/wapiti
https://github.com/wapiti-scanner/wapiti
https://www.zaproxy.org/
https://www.zaproxy.org/
https://code.google.com/archive/p/skipfish/
https://code.google.com/archive/p/skipfish/

Name Algorithm Tools

Page Similarity: Page URL
URL Equality True if the URL strings are the same Black Widow, JAW, SecuBat, GNU

Wget, w3af

Page Similarity: DOM Tree
Tree Equality True if the two trees are identical KAFE
RTED True if RTED(ti,t j) > c for a threshold c, where RTED calculates the minimum of node

edit operations that transform one tree into the other one
Crawljax, FeedEx

UI Controls True if the ratio of common UI controls (e.g., input tags) is greater than a threshold c AutoBlackTest
Root-Link Paths True if the ration of common root-to-link paths is greater than a threshold c Crescenzi

Page Similarity: HTML Code
SimHash True if the Hamming distance of two 64-bit fingerprint digests is greater than a threshold c Crawljax, Manku
TLSH True if the distance of two locality-sensitive hash digests is greater than a threshold c Crawljax
Common Shingles True if the fraction of common shingles is greater than a threshold c Broder
TAF True if TAF(ti,t j) > c, where TAF is the difference of the tag and attribute frequency

function of two trees
Lucca

LevenSeq True if LevenSeq(si,s j) > c, where LevenSeq is the Levenstein distance between the
sequences of the tags and attributes

Lucca

Page Similarity: Screenshots
Color histogram True if χ

2 distance between two color histograms is greater than a threshold c Crawljax
Perceptual hash True if Hamming distance of two 128-bit hash digests is greater than a threshold c Crawljax
Block-mean True if Hamming distance of two 256-bit hash digests is greater than a threshold c Crawljax
PDiff True if the number of common pixels is greater than a threshold c Crawljax
SSIM True if the structural distortion value is greater than a threshold c Crawljax
SIFT True if the common SIFT key-points are greater than a threshold c Crawljax

Page Similarity: Combined Algorithms
jÄk True if the mean value of the fractions of common forms, hyperlinks, and event handlers is

greater than a threshold c
jÄk

ProCrawl True if buttons, text, and links are the same ProCrawl
WebExplor True if page URL strings are the same and the Gestalt Pattern Matching of the HTML

codes is greater than a threshold
WebExplor

Dagger Iterative use of different approaches, respectively, the fraction of common shingles (se-
quence of hashes of a page), the fraction of different tags, and the fraction of different tags
per DOM level

Dagger

LigRE True if the form prefix trees are the same and the common rooted depth link prefix trees
are greater than a threshold c

LigRE

EotS True if the rooted link prefix trees are the same (precondition) EotS
Fetterly True if the URL Rabin fingerprints match and SimHash is greater than a threshold c Fetterly
Arachni True if the HTML code and the cookie sets are the same Arachni
ZAP True if the HTML code, the HTTP headers, and the request methods are the same ZAP
Wapiti True if URL strings (without query string values) and the HTTP methods are the same Wapiti
Skipfish True if the word length distributions and the HTTP response codes are the same Skipfish

Navigation Strategies
DFS The Depth-First Search traverses a website by navigating to the most recently discovered

page after completing the actions on the current one. The actions are executed in the order
of encounter

EotS, Crawljax, ProCrawl, LigRE

JAW The Iterative Deepening Depth-First Search inspired technique traverses a website itera-
tively using a BFS approach with a depth limit. The actions are executed in the order of
encounter

JAW

BFS The Breath-First Search traverses a website by navigating to the most early discovered
page after completing the action on the current one. The actions are executed in the order
of encounter

Crawljax, jÄk, Cookie Hunter,
Cached+Confused, KAFE, SecuBat,
Crescenzi, Arachni, Wapiti, GNU
Wget, w3af, ZAP

Rnd BFS The Breath-First Search with random action selection traverses a website using the regular
BFS for state selection and follows it by random action selection at the selected state

Crawljax

Rnd State The Random State traverses a website by randomly selecting a state and executing actions
on that state in the order of encounter

Black Widow

RL-based The Reinforcement Learning-based approach learns a policy with an appropriate definition
of reward and state

WebExplor, AutoBlackTest

FeedEx FeedEx calculates a score for each visited page: a combination of code coverage impact,
path diversity, and DOM diversity. When selecting the next page, it chooses the page with
the highest score

FeedEx

Artemis Artemis fires sequences of events on the web page. The algorithm prioritizes sequences
with low branch coverage.

Artemis

Table 11: Classification and presentation of the identified building block algorithms.

LoCs (M1) JavaScript (M2) Links (M3)

Avg. app coverage Baseline Avg. app coverage Baseline Avg. app coverage Baseline

Navig. Page sim. Su
m

un
iq

ue

R
an

k

To
ta

l

U
ni

qu
e

R
an

k

U
ni

qu
e

M
is

se
d

Su
m

un
iq

ue

R
an

k

To
ta

l

U
ni

qu
e

R
an

k

U
ni

qu
e

M
is

se
d

Su
m

un
iq

ue

R
an

k

To
ta

l

U
ni

qu
e

R
an

k

U
ni

qu
e

M
is

se
d

BFS Block-mean 218,136 44 66.26% 0.14% 49 9.56% 5.45% 24,391 38 21.42% 0.85% 33 35.15% 46.59% 191,027 40 18.37% 0.43% 34 30.22% 54.13%
BFS ¬RTED Tr. 3 244,946 9 75.89% 0.22% 10 20.59% 1.12% 33,960 7 22.88% 0.99% 23 45.01% 36.94% 289,184 20 18.73% 0.44% 32 40.68% 40.96%
BFS Phash 217,551 45 66.52% 0.14% 49 10.32% 6.03% 14,529 47 17.84% 0.27% 47 22.45% 61.95% 125,247 46 12.92% 0.21% 48 20.52% 65.74%
BFS ProCrawl 210,782 48 65.98% 0.14% 43 10.64% 6.50% 23,725 43 21.80% 0.79% 36 33.73% 46.91% 196,392 38 18.48% 0.43% 35 31.04% 53.39%
BFS SimHash 232,798 24 58.53% 0.16% 26 7.28% 12.97% 25,167 36 20.52% 0.66% 44 36.67% 46.18% 270,506 30 15.74% 0.35% 43 39.38% 43.57%
BFS TLSH 244,326 11 72.16% 0.17% 18 16.35% 1.86% 30,363 23 20.98% 1.10% 11 43.30% 41.87% 258,037 33 15.54% 0.42% 36 36.80% 43.88%
BFS URL Eq. 225,926 32 63.73% 0.14% 37 - - 29,614 24 21.49% 1.02% 18 - - 290,564 18 16.33% 0.78% 11 - -
BFS URL Path Eq. 219,009 39 60.03% 0.14% 45 1.21% 7.92% 26,520 30 20.91% 0.91% 27 36.42% 43.06% 263,163 32 15.16% 0.58% 19 36.82% 42.78%
BFS URL Path Eq. & QS 228,191 28 64.69% 0.22% 12 5.69% 3.70% 30,939 18 21.56% 1.12% 9 42.32% 39.74% 320,915 7 16.43% 0.77% 12 43.62% 37.74%
BFS ¬RTED Tr. 2 245,816 5 69.92% 0.16% 23 18.14% 7.32% 31,594 13 22.34% 0.90% 28 42.45% 38.60% 298,696 14 19.24% 0.56% 23 41.44% 39.80%

DFS Block-mean 212,105 47 64.44% 0.14% 49 8.96% 8.71% 23,605 44 20.89% 0.75% 37 33.43% 46.94% 176,729 43 18.01% 0.34% 44 28.07% 56.25%
DFS ¬RTED Tr. 3 238,313 20 74.22% 0.16% 21 18.25% 1.24% 31,698 12 22.64% 0.95% 26 43.06% 39.05% 274,046 26 18.77% 0.52% 28 38.90% 42.38%
DFS Phash 218,439 43 70.28% 0.14% 49 15.86% 5.17% 14,131 49 17.71% 0.27% 48 21.56% 62.57% 124,388 47 12.48% 0.32% 46 20.92% 66.15%
DFS ProCrawl 208,310 49 64.58% 0.14% 44 9.40% 7.41% 24,167 39 21.61% 0.72% 39 34.24% 46.34% 191,407 39 18.14% 0.52% 29 30.51% 54.23%
DFS SimHash 224,339 34 55.28% 0.15% 31 3.21% 15.38% 25,970 32 20.17% 0.63% 45 37.25% 44.97% 301,721 13 16.56% 0.40% 40 40.99% 38.72%
DFS TLSH 243,842 13 76.81% 0.22% 11 23.36% 1.78% 30,416 22 20.55% 1.04% 14 43.38% 41.85% 227,784 35 15.11% 0.36% 42 37.23% 50.79%
DFS URL Eq. 226,495 29 64.63% 0.14% 34 3.90% 2.47% 31,163 17 21.93% 1.11% 10 42.79% 39.79% 277,129 23 16.17% 0.56% 22 39.18% 41.99%
DFS URL Path Eq. 219,206 38 59.83% 0.15% 29 1.20% 7.94% 28,175 29 21.09% 0.97% 25 39.35% 42.29% 290,496 19 16.21% 0.66% 16 40.57% 40.58%
DFS URL Path Eq. & QS 229,749 27 64.67% 0.19% 15 5.66% 3.44% 30,732 19 21.34% 0.99% 24 42.04% 39.86% 328,731 4 17.17% 0.67% 15 44.89% 37.65%
DFS ¬RTED Tr. 2 241,565 16 69.20% 0.51% 5 17.37% 8.20% 32,372 10 22.42% 0.84% 34 43.20% 37.91% 291,458 17 18.50% 0.53% 26 40.33% 40.15%

JAW Block-mean 220,228 36 66.88% 0.14% 35 9.45% 4.19% 22,394 45 20.89% 0.70% 42 32.64% 49.06% 172,053 44 17.14% 0.33% 45 26.76% 56.63%
JAW ¬RTED Tr. 3 238,705 18 72.41% 0.16% 24 15.07% 1.38% 32,031 11 22.85% 0.99% 22 42.93% 38.27% 274,533 25 19.17% 0.57% 21 38.93% 42.30%
JAW Phash 219,787 37 67.49% 0.14% 42 11.05% 5.09% 14,071 50 17.95% 0.27% 49 21.08% 62.50% 115,089 50 11.35% 0.17% 49 18.27% 67.63%
JAW ProCrawl 214,338 46 65.61% 0.14% 36 9.38% 5.89% 23,754 42 21.66% 0.71% 40 34.04% 47.09% 177,791 42 17.31% 0.52% 30 28.66% 56.35%
JAW SimHash 232,356 26 58.42% 0.15% 30 7.10% 12.96% 26,355 31 20.46% 0.69% 43 37.79% 44.64% 288,914 21 16.10% 0.43% 33 41.01% 41.34%
JAW TLSH 242,988 15 71.78% 0.17% 17 15.59% 2.14% 31,166 16 20.63% 1.14% 8 43.70% 40.75% 264,489 31 15.27% 0.29% 47 38.87% 44.35%
JAW URL Eq. 224,854 33 63.41% 0.14% 40 0.61% 1.20% 30,549 20 22.06% 1.05% 12 40.93% 39.06% 297,981 15 16.56% 0.79% 10 40.06% 38.53%
JAW URL Path Eq. 218,667 41 59.97% 0.14% 45 1.15% 7.93% 28,358 27 20.99% 0.87% 30 38.37% 40.98% 270,850 29 15.00% 0.64% 17 37.56% 41.79%
JAW URL Path Eq. & QS 226,454 30 63.77% 0.14% 45 4.22% 3.70% 31,297 15 21.06% 1.01% 20 42.09% 38.80% 347,421 2 16.48% 0.58% 18 45.04% 34.28%
JAW ¬RTED Tr. 2 241,448 17 69.32% 0.15% 28 17.94% 7.99% 31,413 14 22.22% 0.87% 31 42.54% 39.04% 273,345 28 18.74% 0.41% 38 39.37% 42.96%

Rnd BFS Block-mean 245,700 6 75.81% 0.59% 3 21.42% 2.17% 24,868 37 22.27% 1.01% 21 36.27% 46.48% 204,953 37 17.44% 1.07% 8 33.16% 52.86%
Rnd BFS ¬RTED Tr. 3 259,600 1 78.86% 0.39% 7 25.40% 0.85% 41,691 2 23.69% 2.13% 4 52.54% 33.18% 313,742 9 18.98% 2.08% 6 45.99% 41.69%
Rnd BFS Phash 237,993 21 69.86% 0.38% 8 16.39% 6.60% 14,993 46 18.16% 0.41% 46 23.27% 61.16% 121,661 48 12.56% 0.40% 39 20.93% 66.89%
Rnd BFS ProCrawl 245,255 8 74.64% 0.21% 14 19.07% 1.69% 25,590 34 22.07% 1.02% 17 36.76% 45.36% 209,870 36 18.55% 0.95% 9 33.07% 51.66%
Rnd BFS SimHash 245,471 7 62.51% 0.86% 2 11.47% 10.59% 29,296 25 21.47% 1.63% 7 42.40% 43.02% 316,574 8 16.97% 2.14% 5 47.94% 43.29%
Rnd BFS TLSH 246,426 4 74.83% 0.46% 6 20.46% 2.16% 36,602 5 22.07% 2.07% 5 49.86% 38.02% 302,670 11 16.71% 2.03% 7 46.36% 44.12%
Rnd BFS URL Eq. 252,530 3 76.53% 0.55% 4 22.09% 1.40% 39,655 3 23.25% 2.65% 1 51.46% 35.00% 339,134 3 18.12% 3.14% 1 48.43% 39.81%
Rnd BFS URL Path Eq. 235,231 23 67.80% 0.25% 9 10.99% 4.16% 34,665 6 22.13% 2.35% 3 47.21% 38.21% 302,073 12 16.48% 2.34% 3 44.63% 42.44%
Rnd BFS URL Path Eq. & QS 244,838 10 70.18% 0.21% 13 14.00% 2.74% 43,319 1 22.98% 2.56% 2 54.49% 33.43% 369,810 1 17.62% 2.80% 2 51.57% 38.36%
Rnd BFS ¬RTED Tr. 2 259,028 2 76.46% 1.31% 1 23.66% 1.93% 37,850 4 23.82% 1.93% 6 49.28% 35.17% 324,179 6 19.38% 2.19% 4 47.10% 40.98%

Rnd State Block-mean 218,518 42 68.20% 0.14% 48 13.44% 6.13% 23,977 41 21.76% 0.74% 38 34.11% 46.65% 185,483 41 17.37% 0.53% 27 29.39% 54.93%
Rnd State ¬RTED Tr. 3 238,446 19 75.92% 0.17% 20 21.38% 1.65% 33,240 8 22.50% 1.03% 15 43.67% 36.78% 293,303 16 19.13% 0.56% 24 40.82% 40.26%
Rnd State Phash 218,722 40 69.71% 0.14% 49 15.34% 5.62% 14,189 48 17.51% 0.26% 50 21.29% 62.29% 119,948 49 11.99% 0.13% 50 20.47% 67.17%
Rnd State ProCrawl 206,816 50 63.92% 0.14% 39 8.68% 7.77% 24,075 40 21.06% 0.85% 32 34.42% 46.68% 171,998 45 17.44% 0.42% 37 27.99% 57.37%
Rnd State SimHash 235,734 22 59.32% 0.16% 22 8.98% 12.95% 25,285 35 20.59% 0.70% 41 36.20% 45.52% 303,797 10 15.40% 0.57% 20 42.11% 39.48%
Rnd State TLSH 243,257 14 76.56% 0.17% 19 22.78% 1.69% 28,209 28 20.74% 1.04% 13 40.53% 43.35% 273,591 27 14.29% 0.40% 41 41.22% 44.65%
Rnd State URL Eq. 226,266 31 64.42% 0.14% 33 4.20% 3.22% 28,529 26 20.92% 1.02% 16 39.83% 42.03% 286,916 22 16.18% 0.72% 13 40.20% 40.95%
Rnd State URL Path Eq. 223,208 35 60.30% 0.16% 25 1.72% 7.62% 25,969 33 20.39% 0.88% 29 35.70% 43.62% 256,588 34 15.42% 0.47% 31 36.79% 44.18%
Rnd State URL Path Eq. & QS 232,676 25 66.03% 0.15% 27 7.11% 2.52% 30,462 21 21.28% 1.02% 19 41.39% 39.71% 327,732 5 17.12% 0.71% 14 45.48% 38.51%
Rnd State ¬RTED Tr. 2 244,168 12 70.37% 0.17% 16 19.16% 7.62% 32,561 9 21.79% 0.83% 35 43.22% 37.57% 275,148 24 16.77% 0.54% 25 39.46% 42.67%

FeedEx Block-mean 208,206 59 62.07% 0.13% 57 6.03% 9.26% - - - - - - - - - - - - - -
FeedEx ¬RTED Tr. 3 220,522 38 64.80% 0.14% 49 6.87% 6.23% - - - - - - - - - - - - - -
FeedEx Phash 210,216 55 62.82% 0.13% 57 6.01% 8.16% - - - - - - - - - - - - - -
FeedEx ProCrawl 199,303 63 59.81% 0.14% 49 6.29% 12.55% - - - - - - - - - - - - - -
FeedEx SimHash 221,853 37 54.98% 0.14% 40 2.90% 15.78% - - - - - - - - - - - - - -
FeedEx TLSH 219,249 42 63.51% 0.15% 32 6.71% 6.81% - - - - - - - - - - - - - -
FeedEx URL Eq. 209,735 56 56.70% 0.09% 60 1.46% 14.47% - - - - - - - - - - - - - -
FeedEx URL Path Eq. 215,914 51 59.26% 0.13% 57 0.68% 8.81% - - - - - - - - - - - - - -
FeedEx URL Path Eq. & QS 219,785 41 61.03% 0.14% 38 0.90% 5.75% - - - - - - - - - - - - - -
FeedEx ¬RTED Tr. 2 223,029 36 60.68% 0.14% 56 8.26% 13.67% - - - - - - - - - - - - - -

Tool Arachni 208,753 57 - - - - - - - - - - - - - - - - - - -
Tool Skipfish 202,231 62 - - - - - - - - - - - - - - - - - - -
Tool Wapiti 206,587 61 - - - - - - - - - - - - - - - - - - -
Tool Zap 193,977 64 - - - - - - - - - - - - - - - - - - -

Table 12: Coverage results of all configurations.

	Introduction
	Systematization
	Web Measurements
	Analysis Methodology
	Results

	Crawling Algorithms
	Analysis Methodology
	Results

	Arachnarium: An Evaluation Framework
	Architecture Overview
	Testbeds
	Metrics
	Evaluated Crawlers
	Candidate Building Block Algorithms
	Compound Tools

	Experiments and Results
	Experiment Design
	Experiments
	Coverage Data
	Experiment Measurements

	Best-performing Algorithms
	Total Coverage
	Coverage Growth over Time

	Coverage Analysis w/ Baselines
	Commonly Discovered Surface

	Crawling Parameters

	Discussion
	Lesson learned
	Significant Challenges to Reimplementations
	No Winner, Complex Landscape
	Future Directions

	Ethical Considerations and Threat to Validity

	Related Works
	Conclusion
	Appendix
	Classification of the Identified Approaches
	Excluded Algorithms

