
The Great Request Robbery: An Empirical Study of Client-side Request Hijacking
Vulnerabilities on the Web

Soheil Khodayari†, Thomas Barber*, and Giancarlo Pellegrino†

†CISPA Helmholtz Center for Information Security, *SAP Security Research
{soheil.khodayari, pellegrino}@cispa.de, thomas.barber@sap.com

Abstract—Request forgery attacks are among the oldest threats
to Web applications, traditionally caused by server-side con-
fused deputy vulnerabilities. However, recent advancements in
client-side technologies have introduced more subtle variants of
request forgery, where attackers exploit input validation flaws
in client-side programs to hijack outgoing requests. We have
little-to-no information about these client-side variants, their
prevalence, impact, and countermeasures, and in this paper we
undertake one of the first evaluations of the state of client-side
request hijacking on the Web platform.

Starting with a comprehensive review of browser API
capabilities and Web specifications, we systematize request
hijacking vulnerabilities and the resulting attacks, identifying
10 distinct vulnerability variants, including seven new ones.
Then, we use our systematization to design and implement
Sheriff, a static-dynamic tool that detects vulnerable data flows
from attacker-controllable inputs to request-sending instruc-
tions. We instantiate Sheriff on the top of the Tranco top 10K
sites, performing, to our knowledge, the first investigation into
the prevalence of request hijacking flaws in the wild. Our study
uncovers that request hijacking vulnerabilities are ubiquitous,
affecting 9.6% of the top 10K sites. We demonstrate the impact
of these vulnerabilities by constructing 67 proof-of-concept
exploits across 49 sites, making it possible to mount arbitrary
code execution, information leakage, open redirections and
CSRF also against popular websites like Microsoft Azure,
Starz, Reddit, and Indeed. Finally, we review and evaluate
the adoption and efficacy of existing countermeasures against
client-side request hijacking attacks, including browser-based
solutions like CSP, COOP and COEP, and input validation.

Index Terms—CSRF, Request Hijacking, Prevalence, Defenses

1. Introduction

Request forgery attacks have been one of the most
critical threats to web applications since the early days
of the Web, where attackers trick victims’ browsers into
making authenticated, security-sensitive HTTP requests [1–
5]. The fundamental vulnerability enabling these attacks is
the inability of the server-side component to distinguish
unintentional from intentional requests (i.e., the confused
deputy flaw [6, 7]), allowing maliciously-forged requests

to cause a persistent state change of the web application,
such as resetting passwords [8, 9] or deleting data from
databases [10, 11]. The recent rapid evolution of client-side
technologies has introduced more subtle variants of request
forgery vulnerabilities where attackers no longer rely on
the confused deputy flaw but instead exploit insufficient
input validation vulnerabilities in the client-side JavaScript
program to hijack outgoing requests. The research community
has only recently started exploring these vulnerabilities,
mainly focusing on client-side Cross-Site Request Forgery
(CSRF) [12–14] and a corresponding detection and analysis
technique [12]. Unfortunately, client-side CSRF is only one
instance of the larger issue of request hijacking in web
applications, as other types of outgoing HTTP requests exist
within JavaScript programs that attackers can hijack, which,
to date, remain largely unexplored.

Client-side request hijacking vulnerabilities occur when a
JavaScript program uses attacker-controllable inputs, such
as URL parameters, to create and send network requests.
A closer look at prior work reveals that they primar-
ily focus on asynchronous requests generated via the
XMLHttpRequest [15] and fetch [16] APIs, missing
other types of outgoing requests and APIs that a JavaScript
program can use, e.g., push notifications, web sockets, and
server-sent events, including the sendBeacon API [17],
which accounts for over 35.3% of API calls for asynchronous
requests1. As a result, we still lack a comprehensive explo-
ration and understanding of this threat on the Web.

Client-side request hijacking attacks are a relatively new
phenomenon, with the first documented instance affecting
Facebook in 2018 [13], followed by similar incidents in-
volving popular business applications in 2021 [12]. When
looking at the countermeasures, prior work has proposed
(e.g., [1, 3, 9, 18, 19]) and extensively studied (e.g., [10, 20])
anti-request forgery defenses. However, their focus has been
only the traditional request forgery attacks, addressing the
confused deputy problem, where the server cannot tell
unintentional from intentional requests apart. Unfortunately,
the new client-side request hijacks that result from input vali-
dation flaws can circumvent these defenses (see, i.e., [12, 14])
and we still miss a systematic and comprehensive exploration
of various defense mechanisms against them. Finally, prior

1. We calculated the API usage over Tranco top 10K sites (see §4.3)
using the data collection setting detailed in §5.1 and §6.

1

measurements (i.e., [12]) only focused on a few locally-
installed business web applications [21], leaving the in-the-
wild impact and prevalence of client-side request hijacking
vulnerabilities unclear.

In this paper, we undertake, to the best of our knowl-
edge, the first evaluation of client-side request hijacking
vulnerabilities in the wild, covering three main aspects: a
systematic exploration of the attack surface, a measurement
of vulnerable websites, and a thorough review and evaluation
of request hijacking defenses. Starting from a comprehen-
sive survey of browser API capabilities, we systematically
examine potential attacks when attackers manipulate one
or more inputs of request-sending APIs, covering various
types of sensitive requests in modern browsers. Then, we
propose Sheriff, a client-side request hijacking detection tool
that uses a combination of hybrid program analysis [12] and
in-browser dynamic taint tracking [22, 23] for the discovery
of potentially-vulnerable data flows and dynamic analysis
with API instrumentation [24] for the automated vulnerability
verification. We instantiate Sheriff against the Tranco top 10K
websites to quantify the prevalence and impact of client-side
request hijacking in the wild, processing over 32.4B lines of
JavaScript code across 11.5M scripts and 339K webpages.
Finally, we identify and evaluate defenses, covering built-in
countermeasures offered by browsers and custom defenses
implemented by applications at code-level. In particular, we
assess the efficacy and adoption of browser policies like
Content Security Policy (CSP) [25, 26] and Cross-Origin
Opener Policy (COOP) [27], and examine the client-side
code to identify insecure input validation practices adopted
by developers against request hijacking attacks.

Our results show that the attack surface of client-side
request hijacking vulnerabilities is large, with a total of 10
different variants across six request types, of which seven
variants are previously unknown, notably hijacking requests
of push notifications, window navigations, EventSource,
and WebSockets. Furthermore, client-side request hijacking
data flows are ubiquitous, affecting 9.6% of the Tranco
top 10K websites, with a total of 202K instances across
17.9K webpages. Of these, the new vulnerability types and
variants constitute a significant fraction (36.1%), with over
73.3K instances. To demonstrate the significance of these
vulnerabilities, we created 67 proof-of-concept exploits in 49
sites, including popular ones like Microsoft Azure, Indeed,
Starz, Google DoubleClick, TP-Link, and Reddit, leading
to critical consequences such as arbitrary code execution,
CSRF, information leakage and open redirections. Finally,
the analysis of existing countermeasures suggest that each
can only mitigate a fraction of attacks. For example, CSP
cannot mitigate over 41% of the information leakage and XSS
exploitations of the request hijacking, and COOP and COEP
cannot mitigate over 93% and 94.7% of the total request
hijacks, respectively. Our results show that developers can
fix request hijacking vulnerabilities at code level, and we
identify eight insecure input validation patterns to avoid.
Contributions. In summary, this paper makes the following
contributions:

Listing 1: Example request hijacking vulnerability in Microsoft Azure.
1 var params = (new URL(window.location)).searchParams;
2 var t = params.get("request");
3 if(t != null && t.length){
4 // post message to opener
5 opener && opener.postMessage("reauthPopupOpened", t);
6 // listen for signal
7 window.onmessage = function(){
8 if (event.origin !== opener.origin) return;
9 if (event.data === "sendRequest"){

10 // top-level navigation request
11 document.location.assign(t);}
12 }}

• We conduct the first systematic and comprehensive
study of client-side request hijacking, covering new
vulnerability variants, detection, prevalence, and impact.

• We present Sheriff, an automated detection tool for
client-side request hijacking that uncovered 202K vulner-
able data flows, affecting 9.6% of the top 10K sites, of
which 49 that we manually confirmed to be exploitable,
including Microsoft Azure, Indeed, Starz, and Reddit.

• We identify, review and assess the efficacy and adoption
of existing countermeasures, showing that CSP and
COOP cannot mitigate over 41% and 93% of request
hijacking attacks.

• We analyze coding mistakes of the 961 vulnerable
websites and extract eight common insecure input
validation patterns and practices to avoid.

2. Client-side Request Hijacking

Before presenting our study, we first dissect and introduce
the client-side request hijacking vulnerability in §2.1, and
then, we present the threat model of this work in §2.2.

2.1. Vulnerability Description

Client-side request hijacking vulnerabilities arise when
attackers can trick the client-side JavaScript program into
manipulating request-sending APIs with attacker-controlled
inputs. The recently proposed client-side CSRF vulnerabil-
ity [12–14] is a prominent example of such request hijacking,
where attackers manipulate XMLHttpRequest [15] or
fetch [16] API parameters, and trigger sensitive actions
without user awareness and intention. However, other types
of client-side request hijacking also exist.

Listing 1 shows a real example of a request hijacking vul-
nerability that we discovered in Microsoft Azure (disclosed
and patched), where attackers can hijack a top-level HTTP
request. In more detail, the code first retrieves a query param-
eter value from the URL (lines 1-2), and checks that it is not
empty (line 3). Then, it sends a postMessage to its opener
webpage, and waits to receive back the sendRequest
signal (lines 5-9). Finally, it triggers an HTTP request for
navigation by changing the document location to the query
parameter value (line 11). The vulnerability originates in the
assignment in line 11 because attackers can control the value
of query parameters and, ultimately, pick the URL of their
choosing for the navigation request. Here, the distinctive char-
acteristic of location.assign() as a top-level request

2

Figure 1: Example request hijacking attack.

introduces additional security risks for cross-site requests,
because unlike XMLHttpRequests that are constrained by
SameSite cookies [10] and Same-Origin Policy [28], top-
level requests including location.assign() are not,
bypassing existing countermeasures.

2.2. Threat Model

In this paper, we consider a web attacker [1, 29] who
abuses inputs such as URL parameters, window name,
document referrer, and postMessages, which is in line with
prior work in the area of client-side vulnerabilities and
defenses [1, 10, 12, 30–32]. Figure 1 shows an example
attack scenario exploiting the vulnerability in Listing 1.
First, the attacker prepares a malicious page and lures the
victim into visiting it (step 1). The attack page uses the
window.open() API [33] to open the vulnerable webpage
in a new window (step 2), where it injects an attack payload
in the query parameter request (say attack model A).
Alternatively, the attacker can share the malicious URL with
victims (instead of using browser APIs) and entice them to
click on it, triggering a top-level navigation as shown in [12]
(say attack model B). When the page is loaded completely
(step 3), the JavaScript code extracts the payload from the
query parameter, and triggers a top-level HTTP request
towards the payload value, enabling attackers to hijack the
original request. Unfortunately, because this request is top-
level, browsers will attach cookies to it, circumventing the
SameSite policy [10, 34]. In particular, in attack model A,
the SameSite=Lax policy (default in Chromium-based
browsers) attaches cookies to window.open() requests
but SameSite=Strict policy can mitigate that. However,
in scenario B, even SameSite=Strict is not sufficient,
as cookies are always attached to same-site requests. Con-
sequently, the attacker obtains CSRF by sending arbitrary
requests to any security-sensitive endpoint, resulting in
compromise of database integrity (e.g., deleting VMs, and
changing user settings in Azure). Note that cross-origin poli-
cies like CORS (i.e., access-control-* headers [35])
allow a server to restrict access of any origin other than its
own, thus are ineffective against CSRF exploitations that
abuse the same-origin requests.

Then, in this paper, we consider other types of URLs
that are not based on the http scheme. For example, the
location.assign() API also accepts URLs with the
javascript scheme, which enables attackers to escalate
request API hijacking to arbitrary client-side code execution
if there is no or improper input validation, e.g., by inject-

ing javascript:alert(document.cookie) in the
query parameter request in Listing 1. Accordingly, as
this example highlights, hijacking a request API can have
a wide range of consequences, including cross-site request
forgery, client-side code execution, open redirection, and
sensitive information leakage–to name only a few examples.
As we will show in §7, these types of request hijacking
attacks could be mitigated by constraining request APIs with
opt-in security policies, e.g., using the CSP connect-src
directive [36].

3. Problem Statement

This paper answers the following research questions:
RQ1: Browser Capabilities and Attack Systematization.
The recently proposed client-side CSRF vulnerability [12–
14] allows attackers to generate arbitrary HTTP requests by
manipulating JavaScript program input parameters. However,
client-side CSRF is just one instance of the broader issue of
request hijacking in client-side code, i.e., JavaScript programs
can perform different types of requests (e.g., asynchronous
vs top-level requests or socket connections) using numerous
APIs (e.g., XMLHttpRequest vs sendBeacon), which
presents a diverse threat landscape. In this paper, we take a
step back and study client-side request hijacking vulnerabili-
ties. First, we look at various browser methods and APIs for
sending requests, and label each with specific capabilities
(e.g., accept javascript URIs, allow setting the request
body, etc). Then, we review existing literature and conduct
a comprehensive threat modeling analysis, systematically
assessing the security risks that emerge when an attacker
can manipulate various fields of request-sending APIs.
RQ2: Detection, Prevalence, and Impact. Despite being
aware of client-side CSRF since 2018 [13], we still lack a
clear understanding of its prevalence and severity across the
Web on a large-scale. Unsurprisingly and by extension, we
have little-to-no information about the overall impact and
pervasiveness of the broader issue of request hijacking in real
websites. In this paper, we aim to fill this gap by quantifying
the prevalence of request hijacking in the wild, identifying
vulnerable behaviours, and investigating their impact to gain
insights into the underlying issues and factors that affect the
security posture of web applications.
RQ3: Defenses and Effectiveness. While numerous re-
search efforts studied request forgery countermeasures
(e.g., [1, 3, 9, 10, 18–20]), their focus has been only the
traditional request forgery attacks that abuse the confused
deputy flaw, and hence, we still lack a comprehensive
understanding of the protective coverage of various defenses
mechanisms against client-side variants of the request hijacks.
As the final part of our paper, we systematically assess
existing defenses and their efficacy leveraging data collected
from the previous answers. In particular, we measure the
efficacy and adoption of browser-based policies, such as
CSP [25], COOP [27] and COEP [37], and examine the
discovered vulnerabilities to uncover insecure input validation
patterns and practices adopted by developers.

3

4. API Capabilities and Attack Systematization

In this section we address RQ1, where we systematically
assess modern web browser APIs and their capabilities for
sending various types of client-side requests (§4.1). Then, we
examine each API call to evaluate the resulting vulnerabilities
and attacks when an attacker controls one or more API inputs
(§4.2). Finally, we assess the prevalence of request API usage
on the Web platform (§4.3).

4.1. Browser API Capabilities

Client-side web applications have access to a wide range of
browser functionality via JavaScript Web APIs. An important
group of these APIs is responsible for creating and sending
network requests, which malicious actors could exploit for
request hijacking. To compile a comprehensive list of request-
sending APIs susceptible to such abuse, we performed a
systematic search of the Web request specifications [16, 17,
38–41] from WHATWG [42] and W3C [43] repositories. Our
search focused on identifying JavaScript Web APIs capable
of creating network requests.

As a result, we identified a total of 10 request APIs across
six broad request categories. Each API features different
characteristics in terms of their supported capabilities, e.g.,
the network schemes and methods available for a given API,
the configurable fields of the request (e.g., body and headers),
and the constraints the APIs may be subject to by default,
such as the Same-Origin Policy [28]. In this section, we
focus on default constraints the request APIs are subject to.
The goal is to identify possible attacks under default settings.
In §7, we explain the role other opt-in security mechanisms
like CSP, COOP, and COEP could play to mitigate the
request hijacking attacks. We note that these policies are
opt-in mechanisms that can influence the exploitation of the
vulnerability, not the presence of the underlying software
weakness. For this reason, we do not consider them at the
time of the threat analysis and vulnerability detection. The
resulting APIs are summarized in Table 1. By examining
these request APIs, we uncover potential entry points for
various forms of request hijacking, and their consequences.

4.2. Systematization of Request Hijacking Attacks

In this section we examine the security impact assuming
the threat model presented in §2.2. That is, an attacker can
control the URL (and if applicable, the body and header) of
network requests for each of the APIs discovered in §4.1.
First, we systematically surveyed the existing academic [1, 2,
10, 12, 26, 30, 31, 44, 46, 47, 51–53] and non-academic [45,
48–50, 55] literature, looking for known attacks leveraging
these APIs. Then, we conducted an in-depth analysis of the
threat landscape, where we examined the potential attacks
resulting from an attacker’s capability to manipulate different
fields of each request-sending API.

As a result, we identify a total of 10 client-side request
hijacking vulnerability variants, of which only three are
previously known. Table 2 presents the list of request

hijacking vulnerabilities, together with the responsible APIs
and attacks which are made possible as a consequence of
each vulnerability explained in more detail in the following.
We refer interested readers to §A.2 for examples of attacks.

4.2.1. Asynchronous Requests. Asynchronous requests
such as XMLHttpRequest [39] or the low level fetch
API [16] are typically used to communicate with web services
such as REST APIs, without causing the top-level page to
reload. Attacker manipulation of the URL, body, or header of
asynchronous requests in client-side JavaScript programs can
lead to the victim performing unwanted actions on behalf
of the attacker, i.e., client-side CSRF [12, 13], similarly to
their traditional counterpart [1, 2, 20, 56]

We are currently unaware of studies exploring the ma-
nipulation of sendBeacon API [17] for client-side CSRF
attacks. Furthermore, attacker control of asynchronous re-
quest URLs can also lead to information leakage, which was
not considered by prior works (e.g., [12]). In this case the
attacker manipulates the URL host to point to a malicious
server, where they can access sensitive information stored in
the request header or body, e.g., login credentials, personally
identifiable information (PIIs), and CSRF tokens.

4.2.2. Push Requests. Push notifications [40] allow a web
server to asynchronously send messages to a browser, even
if the web application is not currently loaded. The Push
API requires subscription to a push service via an HTTP
POST request, and a browser can request new messages
via HTTP GET requests. If Push subscriptions do not have
anti-request forgery tokens, attackers can conduct classical
CSRF attacks [45].

While not explored before, similar attacks are possible
in the context of client-side programs. For example, when
creating a Push subscription, the client sends information
such as the subscription endpoint and public key in the body
of an HTTP POST request. Attacker control of the request
body would allow manipulation of these parameters and
hence CSRF [45–47], e.g., by overwriting the subscription
endpoint the application saves in the backend, the attacker
can redirect Push messages to an arbitrary server. We note
that in the case of Push requests, the URL must take a specific
value (i.e., the endpoint listening for Push subscriptions), so
URL manipulation will not usually lead to CSRF attacks.
However, setting an invalid value enables attackers to cause
a persistent client-side DoS, which can be mitigated when
users reset their browser notification permissions. In addition,
control of the Push URL could lead to information leakage
if the request is redirected to an attacker-controlled server,
e.g., the leaked Push endpoint and encryption key can be
exploited to send malicious messages to the victim’s browser.

4.2.3. Server-Sent Events. Server-sent events (SSEs) [38,
48] allow servers to push messages to a browser at any
time, without waiting for a new request. SSEs are ini-
tiated via an HTTP GET request to a URL specified
in the EventSource constructor. By manipulating the
EventSource URL, attackers can redirect the request to

4

l Capabilities w �
ý API � Req. Type Schemes Methods URL Body Header SSC SOP # Specs # Sites # Pages # Calls

#1 Location Href Top-Level Navigation HTTP(S), JS GET [38] §7.2.4 8,044 214,554 1,096,306
#2 XMLHttpRequest Async. Request HTTP(S) Any [39] §3.5 7,522 407,819 2,884,556
#3 sendBeacon Async. Request HTTP(S) POST [17] §3.1 7,061 291,580 2,824,388
#4 Window Open Window Navigation HTTP(S) GET [38] §7.2.2.1 6,972 162,153 559,592
#5 Fetch Async. Request HTTP(S) Any [16] §5.4 5,215 105,463 403,701
#6 Push Push Subscription HTTP(S) GET, POST [40] §3.3 1,528 23,566 40,567
#7 WebSocket Socket Connection WS(S) GET [41] §3.1 1,280 33,724 145,713
#8 Location Assign Top-Level Navigation HTTP(S), JS GET [38] §7.2.4 987 10,092 22,309
#9 Location Replace Top-Level Navigation HTTP(S), JS GET [38] §7.2.4 731 6,421 14,309
#10 EventSource Server-Sent Event HTTP(S) GET [38] §9.2 453 1,690 5,503

Legend: SSC= SameSite Cookies; SOP= Same-Origin Policy; = Supported Capability or Applicable Constraint; = Otherwise.

TABLE 1: Overview of security-sensitive JavaScript APIs that inititate client-side requests, along with their supported capabilities, default constraints and
usage in top 10K Tranco websites (Cf. §6). The table is ordered by the API usage in the wild.

K Vulnerability Reqs. C
SR

F
X

SS
W

S
H

ija
ck

SS
E

H
ija

ck
In

f.
L

ea
k

O
pe

n
R

ed
.

D
oS

� Related Ref.

¶ Forge. Async Req. URL #2, 3, 5 [10, 12, 44]
¶ Forge. Async Req. Body #2, 3, 5 [1, 2, 12, 44]
¶ Forge. Async Req. Header #2, 5 -

¶ Forge. Push Req. URL #6 -
¶ Forge. Push Req. Body #6 [45–47]

¶ Forge. EventSource URL #10 [48]

¶ Forge. WebSocket URL #7 -
¶ Forge. WebSocket Body #7 [44, 49–52]

Forge. Location URL #1, 8, 9 [30, 53, 54]

¶ Forge. Window Open URL #4 -

Legend: Forge.= Forgeable; SSE= Server-Sent Event; WS= WebSocket;
#i= row i in Table 1; = Applicable Attack; = Otherwise.

TABLE 2: Overview of client-side request hijacking vulnerabilities and
attacks. Rows marked with ¶ are new (i.e., client-side variants of)
vulnerabilities and ¶ represent vulnerabilities for which we consider a
new API or exploitation. For new vulnerabilities, related references refer to
their server-side vulnerability counterparts.

a malicious server and achieve SSE hijacking, whereby
malicious events can be sent to the victim’s browser. Simi-
larly to asynchronous and push requests, redirection of the
EventSource URL can also lead to information leakage.

4.2.4. Web Sockets. WebSockets [41, 57] enable full-duplex,
event-driven communications between browsers and servers,
initiated via an HTTP GET request. An attacker controlling
the WebSocket connection can perform cross-site WebSocket
hijacks (CSWSH) [44, 49, 52]. In this scenario, an attacker
can embed a WebSocket to a target website on their own
site. When a victim visits this malicious site, the victim’s
browser is tricked into performing authenticated actions on
behalf of the attacker. In contrast to write-only CSRF attacks,
CSWSH allows full read/write communication. In the context
of client-side vulnerabilities, we show that similar attacks
are possible if the attacker can control the URL used to
perform the initial handshake, redirecting the request to a
malicious server. As the attacker controls the WebSocket,
this can also lead to information leakage from the victim’s
browser. Finally, controlling the data used in WebSocket

messages leads to message hijacking and potentially CSRF.

4.2.5. Top-Level Navigation Requests. Top-level naviga-
tion requests via the location API allow manipulation
of the current browser URL, and trigger a new HTTP GET
request when called [38]. Attacks leveraging this category
of requests have been considered in the past. For example,
manipulating the location URL can lead to client-side
XSS by exploiting the javascript protocol if the entire
URL is controlled by the attacker [30, 53]. Alternatively,
replacing the full URL with a malicious URL will force
an open redirect of the browser to a different site. Finally,
even partial hijack of the URL (e.g., query parameters)
can trigger the application to perform actions on behalf
of the attacker leading to CSRF. This usually occurs if the
application implements state-changing GET requests [56] or
allows forging POST requests with GET where it incorrectly
accepts and processes incoming requests regardless of their
HTTP method, as shown in [10].

4.2.6. Window Navigation Requests. The window.open
API triggers a top level HTTP request in a specific browser
context, such as a new window or the current one (i.e.,
redirection). Similarly to the location API, control of the
window.open API could also lead to CSRF, XSS and open
redirects. However, unlike location, we are not aware of
previous work that has studied this vulnerability.

4.3. Request API Prevalence

Having examined the web APIs which are susceptible
to request hijacking, we also measured their prevalence in
the wild. The last three columns of Table 1 list the number
of sites, pages and calls of a particular API found in the
top 10K Tranco websites. More details on the dataset and
crawling strategy can be found in §6.

Overall, we find 9,901 domains which contain at least one
API related to client-side requests, with a total of ∼7.9M API
calls across 1,032,795≈1M webpages. Top-level navigation
requests via location.href are the most widespread,
being present on more than 8K sites. Asynchronous requests
via the XMLHttpRequest API are the most widely-used,
with almost 3M calls across over 400K pages. We observed

5

that request hijacking threats have not been considered for
over 44.7% of API calls by prior work given the new
vulnerability variants presented in Table 2. The widespread
usage of request-related APIs in the wild, coupled with a
wide variety of potential vulnerabilities, presents a tantalizing
attack surface for hackers. The remainder of this paper is
dedicated to techniques for the detection and evaluation of
these vulnerabilities in the wild.

5. Vulnerability Detection

Starting from our systematization of vulnerabilities pre-
sented in §4, we now formulate our approach to detect and
study request hijacking vulnerabilities, thereby addressing the
first part of RQ2. Client-side request hijacking vulnerabilities
arise due to the presence of insecure data flows from attacker-
controlled inputs to request-sending instructions. In this paper,
we design and implement an open-source, static-dynamic
analysis tool, called Sheriff, to detect such insecure data
flows.

Figure 2 depicts the architecture of Sheriff. Broadly,
it comprises four main components: 1 a data collection
module that gathers Web resources and dynamic taint flows
from webpages, 2 a data modeling module that processes
the collected data to identify and model unique webpages,
creating a property graph for each one, 3 a vulnerability
analysis module that traverses this graph following the
propagation of unvalidated data flows from input sources
to request-sending functions, and finally 4 a dynamic
verification module that confirms the potential forgeability of
requests. The rest of this section describes each component.

5.1. Data Collection

The first step of our analysis pipeline involves collecting
client-side code and runtime values (e.g., DOM snapshots)
of web applications for security testing. Starting from a
list of sites under test like Tranco [58], Sheriff instantiates
N crawling workers and continues orchestration until all
input sites have been crawled. We developed a taint-aware
crawler based on Playwright [59], an instrumented version
of Firefox known as Foxhound (v98.0.2) [22, 23], and
Firefox DevTools [60]. Since Foxhound does not provide
instrumentation support for all request APIs listed in Table 1,
we added further instrumentation to provide taint tracking
support for these APIs (hereafter, Foxhound+). Given a
domain as input, the crawler visits webpages with a depth-
first strategy, and stops when it does not find new URLs or
visited a maximum of 200 URLs per site. During the visit,
the crawler collects the following information: webpage
resources (e.g., scripts), DOM snapshots, global objects’
properties, event traces, network requests and responses, and
finally dynamic taint flows from program inputs to security-
sensitive instructions, such as request-sending functions.

Our crawler does not create accounts or login since manual
creation and maintenance of sign-up and sign-in scripts
is brittle and challenging, particularly when dealing with

thousands of applications. This limitation is in line with the
state-of-the-art of security testing at scale (e.g., [23, 31, 32]).

5.2. Data Modeling

5.2.1. Preprocessing. Given the webpages’ data collected
by the crawler, Sheriff performs data pre-processing for
efficiency and scalability reasons. For example, Sheriff pre-
processes the client-side code to filter out near-duplicate web-
pages [61, 62] by comparing SHA-256 script hashes, which
allows it to focus on pages with distinct JavaScript code,
reducing the overall effort for program analysis. Similarly,
Sheriff can perform other types of data preprocessing, such as
(custom) search-based filtering of data or code normalization
as used in prior work [12].

5.2.2. Model Building. After removing duplicate webpages,
Sheriff creates a property graph [2, 63, 64] of the client-
side program under test, capturing both static and dynamic
program behaviours, known as Hybrid Property Graph
(HPG) [12]. Sheriff instantiates a pool of workers to generate
HPGs, using an extended engine of JAW [12]. Then, these
HPGs are enriched with taint flow information provided
by Foxhound+ to patch missing HPG edges due to static
analysis shortcomings, and finally stored in a Neo4j [65]
graph database which we can query for security testing.
Hybrid Property Graphs. HPGs [12] are unified represen-
tations of client-side JavaScript programs that integrate static
code representations and runtime state values into a graph-
based structure. State values are concrete program values
observed during execution, e.g., web storage values and
cookies. HPGs integrate several static code representations,
i.e., Abstract Syntax Tree (AST), Control Flow Graph
(CFG), Call Graph (CG), Program Dependence Graph (PDG),
and Event Registration, Dispatch and Dependency Graph
(ERDDG), that collectively capture the program’s syntactical
nesting, execution order, function call relationships, data flow
and control dependencies, and event-driven control transfer,
respectively. HPGs also incorporate Semantic Types, which
are labels assigned to nodes (e.g., sinks and sources) to
capture the semantic meaning of instructions. Encoded as
a directed graph, HPGs employ a labeled property graph
structure, where nodes and edges possess labels and key-
value properties [63, 66].
Taintflow-Augmented (TA) HPGs. In this paper, we for-
mulate the request hijacking vulnerability detection task
over HPGs, where we intend to identify request-sending
instructions that are triggered at page load, and that are sus-
ceptible to manipulation by attackers through program inputs.
Unfortunately, conducting such inter-procedural reachability
and data flow analysis tasks is non-trivial due to the dynamic
nature of client-side JavaScript programs (e.g., [12, 67–71]).
While HPG state values (i.e., environment properties and
event traces [12]) help to alleviate many of JavaScript static
analysis shortcomings (e.g., imprecise control and data flow
dependencies) by reasoning on concrete object snapshots
(e.g., points-to analysis and triggered event handlers), they are

6

Figure 2: Architecture of Sheriff.

not sufficient to identify many of the other missing call and
data flow connections in the graph. Accordingly, in this paper,
we use fully-fledged, in-browser dynamic taint tracking to
further augment HPGs by adding supplementary edges and
labels to nodes (e.g., to mark reachability, semantic types
and runtime variable values), thus reconstructing missing
connections that are reachable at page load, which are
otherwise missed by static analysis.
TA-HPG Construction. We used Foxhound+ to collect
dynamic taint flows from input sources to all sink types,
including those that are not request-sending instructions (Cf.
Table 11), so that we can complement as many potentially
missing elements as possible in the HPG. Specifically, we
first extract the dynamic call graph and data flow graph from
Foxhound+, and merge them with static call graph and PDG,
respectively. To do the match between the dynamic and static
graphs for merging, we first determine in which script file
an instruction or node is located by comparing the script
hash in the two models and, then, use the line of code to
determine the top-level (i.e., CFG) node in the HPG for that
instruction. When merging the dynamic data flow graph with
PDG, we create data dependency edges if an edge is missing,
with the labels being the variable name reported in the taint
flow whose data is propagated. Conversely, if a PDG edge
already exists between two nodes, we add a label to that
edge marking the runtime value of the propagated variable.

Similarly, when merging the two call graphs, we create a
new edge if it is missing and label it with the invoked function
and parameter names as well as concrete parameter values of
the function call. However, when the call edge exists in the
HPG, we only enrich its information by adding the runtime
values of the call site parameters. Finally, we added labels to
all sources and sink nodes as semantic types, capturing the
semantic of those instructions, e.g., the type RD_DOC_URL
is set for instructions that read the value of document.URI,
and then propagated to other HPG nodes following the
calculation of the program. We refer interested readers to
§A.1 for more details on TA-HPGs. As we will show in §6,
this configuration facilitates a comprehensive representation
of program dynamics, enabling enhanced analysis capabilities
for vulnerability discovery.
Static Analysis Engine Enhancements. To enhance JAW’s
HPG generation, we made several modifications address-
ing incomplete ES6 support for improved control transfer

modeling and data flow analysis. For example, we added
support for asynchronous operations using the Promise
object and setTimeout() callbacks [72], improving the
precision of call graph and PDG edges. Additionally, we
applied multiple optimizations to improve scalability, such as
handling inefficiencies in iteration constructs during the PDG
construction and managing Neo4j graph databases in parallel
by creating an orchestrator using ineo [73]. Overall, these
modifications addressed several of the shortcomings of JAW,
enabling more precise analysis and improved scalability in
the construction of HPGs.

5.3. Vulnerability Analysis

After modeling the client-side code as a TA-HPG, we
define the task of detecting request hijacking vulnerabilities
as a graph traversal problem. Specifically, we intend to search
for program instructions that send sensitive requests at page
load, whose parameters originate from attacker-controlled
program inputs. As the first step, we identify TA-HPG sources
that read attacker-controlled inputs (Cf. §2.2), and assign
them a relevant semantic type similarly to JAW [12], e.g., we
set a label named RD_WIN_LOC for instructions that read
the URL through window.location API. Then, given a
list of browser APIs that are used for sending requests (Cf.
Table 1), Sheriff searches the TA-HPG to identify nodes using
these APIs, and marks them as a sink by assigning them a
relevant semantic type, e.g., the label WR_ASYNC_REQ_URL
is set for instructions that write the URL of an asynchronous
request, such as XMLHttpRequest.open().

Finally, to discover vulnerable paths, Sheriff performs data
flow analysis by propagating semantic types from sources to
sinks over PDG, CFG, CG, and ERDDG edges, and selects
unvalidated paths where a node with a sink semantic type is
tainted with a source type and picks up the attacker-controlled
values. Then, Sheriff performs reachability analysis to check
if the vulnerable path may correspond to lines of code
executed at page load. To do that, it starts from both source
and sink nodes and follows backward CFG, ERDDG, and
CG edges until it reaches the CFG entry node or there are no
longer edges matching the criteria to backtrack, and selects
data flows where both the source and sink are reachable
nodes. Ultimately, this component outputs a set of paths
with potential data flows from a source to a request sink.

7

5.4. Vulnerability Verification

Given a set of candidate request hijacking data flows, the
goal of this step is to confirm the feasibility of each flow
dynamically and eliminate potential false positives. We relied
on Playwright [59] and Chrome DevTools Protocol [24]
to perform runtime monitoring, where we instrumented
browser APIs responsible for sending requests (Cf. Table 1)
and intercepted network messages that occur at page load.
To minimize risks and ensure responsible conduct, the
verification module instruments request APIs to only log
request parameters, without actually sending any requests
to server-side. This approach mitigates ethical concerns by
preventing unintended interactions. Specifically, for each
webpage, we first compare the script hashes in our dataset
and the live webpage. If they match, we perform runtime
monitoring against the live version. Otherwise, we test the
local snapshot. This approach ensures that the live webpage
remained unchanged since our data collection, mitigating the
time-of-check to time-of-use issue.

Then, for each request hijacking data flow, we input a
benign token to the corresponding source, load the webpage
in an instrumented browser controlled with Playwright and
search for the token in the client-side request to check
whether the manipulated inputs are observed. We test each
candidate data flow both in the affected webpage and all
its near-duplicate pages, which have the same set of scripts
but potentially different DOM environments (Cf. §5.2.1).
By doing so, we switch DOM trees when testing the data
flow within the affected JavaScript program, as the DOM
environment can affect the execution of the program. To
enable this approach, we need to provide the input differently
depending on the type of the source, i.e., URL parameters,
postMessages, document referrer and window name (Cf.
§2.2). For example, in case of URL parameters, we can
control them directly, and load the manipulated URL for
testing. For other sources, we load a test webpage in the
browser, which uses window.open() [33] to open the
target webpage in a new window and set the window name
through window.name API [74] or send postMessages to
the opened window [32]. Alternatively, the test page can
redirect to the target webpage and control the document
referrer leveraging the URL of the test page. Finally, we
perform manual analysis to validate the decision reported by
Sheriff and examine the exploitability of the reported data
flows.

6. Empirical Evaluation

This section addresses the second part of RQ2 (Cf. §3),
where we conduct the largest-to-date study to quantify the
prevalence and impact of request hijacking vulnerabilities in
the wild. To accomplish this, we utilized the Tranco site list
downloaded on Sept. 29, 2022 (ID: N7QWW) [58], where
we first selected the top 10K domains by excluding duplicate
versions of websites (e.g., google.com and google.co.uk), and
then instantiated Sheriff for each of them. We started our
crawling infrastructure of §5.1 in Oct. 2022 by deploying

Top 10K Sites � Raw Data Dedupl. Top 50 Flows
Webpages 1,034,521 867,455 339,267

Scripts 46.1 M 36.7 M 11.5 M
LoC 129.8 B 104.1 B 32.4 B

Taint Flows 43,143,773 35,209,216 21,673,167
Req. Flows 8,024,030 7,205,914 3,318,747

Legend: Dedupl.= Page Deduplication.

TABLE 3: Summary of the collected data and preprocessing steps.

100 parallel browser instances. To ensure comprehensive cov-
erage, we made up to three repeated attempts for each failed
crawling website, followed by a detailed manual analysis.
The entire data collection process spanned approximately six
weeks. The rest of this section details our findings.

6.1. Data Collection and Processing

Table 3 summarizes the results of data collection and
modeling steps. Starting with the 10K seed URLs, Sheriff
obtained a grand total of 1,034,521≈1M webpages across all
websites. The number of pages per site spanned from 1 to 200,
averaging at 103 pages. These 1M pages contained around
46.1M scripts with over 129.8B LoC. Page de-duplication
(Cf. §5.2.1) enabled us to focus on pages with unique sets
of scripts and reduced the size of the dataset by about 17%,
that is, out of the total 1M webpages, 867,455 pages were
unique.

Considering the extensive size of the raw data and the
need to analyze hundreds of thousands of webpages, we
further reduced the size of our testbed by focusing our
testing efforts on the top 50 pages of each site that exhibit the
greatest frequency of dynamic taint flows (originating from
input sources and reaching request-sending sinks), which is
based on the higher probability of these pages containing
vulnerabilities. In summary, the 867K unique pages contained
∼7.2M dynamic taint flows to request-sending sinks which
we used for our page selection. Accordingly, the 867K
webpages were filtered to 339,267 pages. Out of these,
Sheriff extracted 11,544,754 scripts (32.4B LoC) and 21.6M
dynamic taint flows, that we can use to enrich HPGs in order
to remediate missing connections that are not discovered by
static analysis. Out of these 21.6M taint flows, 3,318,747
flows contain request-sending sinks, which can indicate the
presence of request hijacking vulnerabilities. In total, Sheriff
processed an average of 34 scripts and 95K LoC per page,
generating 339,267 TA-HPGs.

6.2. Prevalence in the Wild

After TA-HPG construction, Sheriff performed graph
traversals for vulnerability discovery following §5.3. In
summary, Sheriff identified an average of 23 request-sending
sinks and 65 sources per webpage, totaling about 7.9M sinks
and 22.3M sources. Among these, static analysis found a
total of 236,427 potential data flows from sources to sinks, of
which ∼86% (i.e., 202,834) were verified following runtime
experiments. These vulnerable data flows affected around

8

` Flows ç Breakdown �

K Vulnerability ä Sinks WURL WN DR PM Total Verified Dynamic Mixed Static Pages Sites

¶ Forge. Async Req. URL 6,112,645 106,218 105 1,232 46 107,601 91,688 47,631 8,037 36,020 12,908 616
¶ Forge. Async Req. Body 4,584,483 76,517 428 5,209 6,564 88,718 78,240 63,308 7,442 7,490 9,510 819
¶ Forge. Window Open URL 559,592 20,574 21 76 3 20,674 16,566 49 652 15,865 8,846 365

Forge. Location URL 231,067 4,533 300 108 8 4,949 4,079 1,157 131 2,791 2,610 324
¶ Forge. Async Req. Header 119,855 2,401 5 42 372 2,820 2,446 1,710 135 601 1,587 107
¶ Forge. WebSocket URL 145,713 5,322 32 320 807 6,482 5,520 2,865 543 2,113 1,096 56
¶ Forge. WebSocket Body 145,713 2,867 18 172 434 3,490 2,973 1,543 292 1,137 590 30
¶ Forge. Push Req. URL 40,567 592 93 0 0 685 539 0 530 9 497 25
¶ Forge. Push Req. Body 26,441 94 61 2 0 157 119 0 115 4 101 9
¶ Forge. EventSource URL 5,503 680 2 36 133 851 664 387 66 211 56 3

Total 7,996,944 219,798 1,065 7,197 8,367 236,427 202,834 118,650 17,943 66,241 17,805 961
Legend: Forge.= Forgeable; WURL= Window URL; WN= Window Name; DR= Document Referrer; PM= postMessage.

TABLE 4: Summary of client-side request hijacking data flows in top 10K sites. The table shows the total number of data flows from input sources (columns
3-6) to request sinks (Cf. Table 11) as well as the affected webpages and sites. Rows marked with ¶ and ¶ represent new vulnerabilitiy types proposed by
our work and variants for which we also consider a new API, respectively. The table also shows the distribution of data flow paths in the TA-HPG (static,
dynamic, or mixed) based on the type of edges involved in the flow, highlighting the contribution of dynamic information for vulnerability discovery.

5.2% of the tested webpages (17,805 out of 339,267) and
9.6% of the sites (961 out of 10K), which is alarming. Table 4
presents a summary of the results.
Types of Hijacked Requests. Among the various types of
requests that can be hijacked, asynchronous requests are the
most widespread (85%), with over 172K instances across 905
sites. Interestingly, forged window loads are the second-most
prevalent (8.2%), accounting for 16.5K flows in 365 sites. At
the other extreme, hijacked push requests and EventSource
occur the least often, each affecting only about 0.3% of
the flows across 25 and three sites, respectively. Finally,
hijacked web sockets and top-level requests demonstrated a
moderate level of prevalence, corresponding to about 6% of
the vulnerable data flows in total.
New Vulnerability Types. We observed that the new vul-
nerability types and variants listed in Table 2 constitute a
significant fraction (i.e., 36.1%) of the request hijacks. First,
the new vulnerability types account for over 14.2% (35,159)
of the total 236K discovered cases. Among these, Sheriff
verified 28,827 vulnerable data flows across 10,925 webpages
and 439 sites, highlighting the widespread occurrence of the
new vulnerabilities. Then, 21.9% of the request hijacks are
new variants where we considered a new browser API.
Vulnerability Impact. We found that the 202K vulnerable
data flows can have different security implications (Cf.
Table 2), where each vulnerability could lead to multiple
consequences through different exploitations, amplifying the
potential risks. The most common consequence is client-side
CSRF, for which 96% of the vulnerabilities (i.e. 196K) can
be abused. However, 48.5% of the hijackable requests can be
abused for information leakage too, as the attacker can control
the endpoint to which the request is sent to, and consequently
steal the sensitive information contained in the request body,
such as CSRF tokens, PII, push endpoint and encryption key,
as we will show in §6.4. In comparison, the least common
consequence is persistent DoS on push subscriptions that
accounts for 0.2% of the total vulnerabilities. Other common
consequences are client-side XSS and open redirections that
affect 10.1% of the pages in total. Finally, 4.2% of the
vulnerabilities could lead to cross-site connection hijack of

WebSocket and EventSource.
Verification and False Positives. Given the extensive num-
ber of reported data flows by Sheriff, we performed a semi-
automatic verification as elaborated in §5.4.

In total, the dynamic verification module confirmed about
86% of the data flows (i.e., 202,834 out of 236,427) and
eliminated a total of 33,593 FPs across 1,954 webpages and
28 sites. Notably, for the majority of the confirmed flows
(i.e., 81%), the verification module successfully validated
the vulnerable flow by loading the affected webpage and
executing it via Playwright. However, in the remaining 19%
of cases (i.e., 38,522 flows), the verifier required executing
between one to 41 near-duplicate pages before confirming it.
We note that the verifier tests the presence of the data flow
also in near-duplicate pages in order to switch the DOM tree
with one of the duplicated pages. This is aimed to determine
if the same data flow could be observed across various DOM
environments during page load, capturing different executions
of the program (Cf. §5.4).

We manually confirmed and investigated the reason for
false positives by focusing on a random subset. Specifically,
we sampled 10 pages per each of the 28 affected sites, which
included 5,032 flows in total, and manually inspected them.
We observed that a large number of FPs (i.e., 3,951 or 78.5%)
occur during the data flow analysis from sources to sinks, and
the rest (i.e., 1,081 FPs) occur when checking if a request
is triggered at page load or not (i.e., reachability analysis).
The former cases happened due to presence of dynamic
code evaluation constructs like eval() that changed the
values of tainted variables, usage of prototype chain with late
static binding, generator functions, and inaccurate pointer
analysis for property lookups. The latter cases happened due
to dynamically called functions, inaccurate pointer analysis,
usage of reflection, and dynamic removal of event handlers.
Accordingly, verification was critical to eliminate FPs.
Contribution of Dynamic Analysis. We observed that
dynamic information plays a crucial role in identifying
67.3% of the discovered request hijacking data flows, as
shown in Table 4. First, dynamic taint analysis detected
118.6K vulnerable data flows that were not found by the static

9

� Request Fields W � Prevalence

D P B Q F H S Total Flows Pages Sites

5 2,897 1,103 101
5 1,235 235 26
3 110 34 11
4 88 52 13
3 1 1 1
3 1,456 391 52
2 65 39 5

4 1 1 1
2 973 159 12
2 18 10 2
3 8 6 1
2 672 118 10

5 2 1 1
3 5 4 1
3 10 2 2
1 564 95 9

3 8 6 1
3 1 1 1
2 3 3 1
1 342 124 13
3 3 1 1
3 1 1 1
2 15 1 1
1 9,640 2,024 219

2 92 47 6
1 95,601 12,187 981
2 215 74 5
1 88,009 9,356 747
1 799 400 36

Legend: D= Domain; P= Path; B= Body; Q= Query; F= Fragment;
H=Headers; S=Scheme;

= Not Controllable (00); = Partial Control (01); = Full Control (10);

TABLE 5: Anatomy of client-side forgeable requests. The table shows 29
distinct request patterns ordered by the degree of control (descending).

analyzer, i.e., data flow paths containing only dynamic edges.
Second, it aided static analysis in identifying 17.9K additional
data flows by patching missing HPG edges necessary for
vulnerability detection (i.e., mixed data flow paths). However,
Table 3 highlights a key challenge of pure dynamic analysis:
the large size of reported taint flows, the majority of which
were not under attacker control (Cf. Table 10). Conversely,
static analysis was able to detect 66.2K data flows. There-
fore, a combination of dynamic and static analysis can be
advantageous. Dynamic analysis enhances static analysis by
supplementing HPG edges (e.g., call graph), while static
analysis helps eliminate spurious taint flows that are not
controllable by attackers, e.g., due to input validation.

6.3. Anatomy of Hijacked Requests

In this section, we examine the extent of manipulation an
attacker can exert on the hijacked requests of Table 4, as
the specific forgeable field(s) and the degree of control an
attacker possesses over them may affect the potential risk
and severity of vulnerabilities. We used Sheriff to extract the
vulnerable lines of code, examined the code stack trace and
semantics, and characterized the request anatomy as a binary
pattern, encoding information about the type and number of

request fields that could be manipulated, as well as the type
of control in each field. As a result, we identified 29 distinct
forgeable request patterns. Table 5 summarizes our findings.
Type of Control. Our analysis revealed that 80% of the
forgeable request fields are fully controllable, allowing the
attacker to overwrite their values entirely. In the remaining
cases, the attacker has partial control over specific parts of
the field, such as one or more parts of query parameters,
hash fragment, or body, but not complete control.
Forgeable Request Field. The severity of the vulnerability
can be influenced by the type of manipulable field. For
example, we found that in 8,105 forgeable requests of
161 sites, the attacker can manipulate the domain, and
request hijacking could be used to perform cross-origin
attacks (e.g., leakage of CSRF tokens). We grouped requests
in seven categories based on the specific field(s) being
manipulated, where each request may fall into multiple
groups. Our analysis uncovered that the most frequent types
of manipulable fields are request body and query parameters,
accounting for over 47% and 45% of the forgeable requests
respectively. Additionally, the forgeability of domain and path
fields in ∼11.8% of the requests is concerning. Finally, we
observed that other request fields like headers, hash fragment
and scheme are forgeable in about 5.7% of the cases.
Degree of Manipulation. We found that the number of
concurrently manipulable request fields varies from one to
five out of a total of seven forgeable fields. For example, for
2,897 forgeable requests from 101 sites, the attacker has full
control over all URL fields but lacks control over request
headers and body. In contrast, in 95K requests on 981 sites
and 88K requests on 747 sites, the attacker can manipulate
only the request body and query parameters, respectively. We
observed that in the majority of the hijacked requests (i.e.,
97%), only one or two fields can be manipulated. However,
such ad-hoc manipulation capability can still lead to severe
consequences (Cf. §6.4).
Request Method. We found that in ∼26% of the cases, the
request method is controllable by the attacker. Conversely,
for the non-controllable cases, we observed that 51.5%
utilized the GET method, while ∼34% opted for POST. The
remaining 14.5% employed other state-changing methods
such as PUT and DELETE.

6.4. Exploitations

We manually examined the exploitability of the identified
vulnerabilities by a web attacker. Due to the large number
of confirmed data flows (202K across 961 sites), manual
exploit creation for all was impractical. Instead, our goal
was to demonstrate exploitability by focusing on a random
subset. To ensure comprehensiveness, we aimed to maximize
the coverage of our testing across various sites. Therefore,
we randomly selected two vulnerable pages from each of the
961 affected sites. We used our analysis of §6.3 to prioritize
testing efforts by focusing first on requests with a higher
degree of manipulation across various types of client-side
requests. Then, we confirm the forgeability of requests and

10

look for their use in attacks that we presented in §4. For
each attack scenario, we conducted specific checks. For
example, we looked for server-side endpoints that could
lead to security-sensitive state changes (e.g., modifying user
settings) for client-side CSRF. For information leakage, we
examined the request body for the presence of sensitive data
like PII, authorization keys, and CSRF tokens. Furthermore,
For WebSocket and EventSource, we check whether we can
establish arbitrary connections to attacker-controlled end-
points. Finally, for open redirect and client-side XSS attacks,
we assessed the susceptibility of top-level requests to arbitrary
redirections and improper validation of javascript URIs,
respectively. In doing so, we limited our tests exclusively to
user accounts that we created on those sites, and excluded
testing requests and functionalities where we could not
control the impact (e.g., publicly accessible content).

Table 6 summarizes the attacks we uncovered during
our investigation. In total, we created 67 proof-of-concept
exploits across 49 websites, with far-reaching consequences
like CSRF, client-side XSS, open redirections and leakage of
sensitive information across various popular platforms and
functionalities. Notably, we discovered an account takeover
exploit in the Starz movie streaming service, user VM
deletion in Microsoft Azure, arbitrary redirection in Google
DoubleClick and VK, manipulation of account settings in
DW and BBC, tampering of job applications in Indeed,
data exfiltration through WebSocket and EventSource hi-
jacks in JustWatch and Forbes, CSRF on PushManager
subscriptions in Reddit, persistent client-side DoS on push
notifications in Yoox shopping website, and finally client-
side XSS in TP-Link, to name only a few examples. Among
these, a total of 33 exploits across 24 sites belong to new
vulnerability types presented in our work. We refer interested
readers to §A.2 for case studies of the confirmed attacks.

In the other reviewed cases, we were unable to create
exploits or impact was low. However, achieving completeness
in the manual search for exploits is a challenging task,
requiring extensive knowledge of each specific application
for target endpoint identification, request semantics, and the
contexts where an attacker could inject payloads as well as
strict adherence to ethical standards, e.g., excluding testing
of cases not in compliance with vulnerability disclosure
programs. For these reasons, automating exploitation is
challenging.

7. Defenses

This section addresses RQ3, where we review and assess
the adoption and efficacy of existing countermeasures against
client-side request hijacking vulnerabilities. We systemati-
cally surveyed academic literature (i.e., [1–3, 6, 9, 10, 12, 18–
20, 23, 30, 44, 56, 75–80]), W3C specifications [81], and
OWASP CheatSheet Series [14], looking for classical anti-
CSRF countermeasures and those defenses that can mitigate
client-side request hijacking. Table 7 summarizes our findings.
In total, we identified 10 distinct request forgery defenses,
that we grouped into two broad categories based on the party
that enforces them (i.e., web application or the browser).

K Vulnerability C
SR

F

X
SS

W
S

H
ija

ck

SS
E

H
ija

ck

In
f.

L
ea

k

O
pe

n
R

ed
.

D
oS

Total

¶ Forge. Aysnc Req. URL 7/6 - - - 12/7 - - 19/13
¶ Forge. Aysnc Req. Body 4/4 - - - - - - 4/4
¶ Forge. Aysnc Req. Header 1/1 - - - - - - 1/1

¶ Forge. Push Req. URL - - - - 2/2 - 2/2 4/4
¶ Forge. Push Req. Body 1/1 - - - - - - 1/1

¶ Forge. EventSource URL - - - 1/1 1/1 - - 2/2

¶ Forge. WebSocket URL - - 2/2 - 4/2 - - 6/4
¶ Forge. WebSocket Body 2/1 - 2/2 - - - - 4/3

Forge. Location URL 1/1 3/3 - - - 7/6 - 11/7

¶ Forge. Window Open URL 1/1 6/6 - - - 8/8 - 15/10

Total 17/15 9/9 4/4 1/1 19/12 15/14 2/2 67/49
Legend: M /N= M exploits across N sites.

TABLE 6: Summary of exploitations for client-side request hijacking
vulnerabilities. Rows marked with ¶ and ¶ represent new vulnerabilitiy
types and variants with a new API or exploitation, respectively.

For each defense, the table represents whether the defense
is effective against client-side request hijacks, there is built-
in browser support to enforce it, it is enabled-by-default,
whether it requires correct configuration (when offered built-
in by the browser), and finally whether it requires custom
implementation by web application developers. The rest of
this section discusses adoption and efficacy of each defense.
Traditional Mechanisms. CSRF attacks can be mitigated
by employing various countermeasures, such as anti-forgery
tokens [1, 2, 9, 14, 18, 20], CORS preflight requests [20],
Origin/Referer [1, 4, 14, 84] header checks, and
SameSite cookies [10]. Our measurement in Table 7 shows
that these countermeasures are well adopted. For example,
we found that 130,359 of the 202K forgeable requests (Cf.
Table 4) include a token in the request body or header. Among
these, 116,002 cases featured a token name containing ‘csrf’
or ‘xsrf’, indicating it was an anti-forgery token. Then, when
looking at JavaScript code, we observed that developers
explicitly included Origin/Referer headers in 42,310
same-site requests. Finally, we observed that 3,751 vulnerable
pages (out of 17.8K) use SameSite cookies with Lax or
Strict policies.

While these defenses are necessary to prevent classical
request forgery attacks (assuming correct implemention), they
are not sufficient to prevent client-side hijack of requests,
because JavaScript programs and web browsers include
these tokens, headers, and cookies in same-site requests.
Also, header-based approaches like CORS are limited to
constraining cross-origin requests, but not same-origin re-
quests initiated from the client-side code, thus ineffective
against CSRF exploitations. In addition, when the request
body contains sensitive information, attackers can hijack the
request and reroute it to their own domains, thereby setting
the CORS response headers to their advantage.
Input Validation. Robust input validation can ensure data
integrity and reliability by requiring untrusted inputs to con-
form to specific, expected formats [82], preventing malicious

11

Category Defense Ó w H l Î References # Pages # Sites

Custom (Application) Input Validation [12, 23, 30, 32, 82, 83] 125,738 7,021
CSRF Tokens* [1, 4, 9, 14, 18, 20, 56] 32,925 7,692
Fetch MetaData* [80] 13,873 910
Origin/Ref. Headers* [1, 10, 14, 20] 9,922 1,745

Policy-based (Browser) Cross-Origin Resource Sharing [35] 284,984 8,741
SameSite Cookies [10, 19, 34, 76] 69,865 5,621
Content Security Policy [25, 26, 31, 44] 25,799 4,616
Cross-Origin Opener Policy [27, 80] 6,581 231
Cross-Origin Embedder Policy [37] 3,314 96

Legend: Ó= Effective; w= Built-in Browser Support; H= Enabled-by-Default; l= Require Configuration; Î= Require Implementation;
= Not Applicable; = Partially Applicable; = Fully Applicable; *= Server-side enforced.

TABLE 7: Summary of existing defenses and their protective coverage against client-side hijacks. The table shows the adoption rate of the various defense
mechanisms in the wild. For rows marked with *, the adoption rate only reflects the explicit inclusion of headers/tokens in the client-side code.

inputs reaching request-sending instructions. Accordingly, we
identified and analyzed secure and insecure input validation
patterns and practices that is employed by websites in the
wild against request hijacking attacks as described below.

First, to identify insecure input validation code patterns,
we analyzed vulnerable data flows discovered in §6.2, and
extracted the underlying reason why the flow was marked
as vulnerable, focusing on the presence of insufficient,
missing or logically flawed input validation checks. Table 8
summarizes our findings, where we grouped the checks
into eight different categories. Our analysis uncovers that
∼47% of vulnerable data flows do not have any input
validation checks, suggesting that developers are largely
unaware of risks associated with controlling client-side
requests. Furthermore, over 13.8% of the cases rely solely
on a variety of trivial checks, such as length and type
checks, and 24.9% use string operations to search for
existence of trusted domains in URLs or check different URL
fields, which is insufficient, e.g., the check for presence of
benign.com can be trivially bypassed if the attacker uses
the payload benign.com.evil.com. Similarly, checks
that only test partial URL fields, such as path or query
parameters are insufficient, because attackers may be able
to forge the request domains, or overwrite query parameters
with parameter pollution [85]. We observed that a different
group of data flows (11.1%) apply a combination of these
checks simultaneously.

Then, about 2.7% of the data flows contain validation
checks that compare two different attacker-controlled val-
ues with one another, e.g., a query parameter value, used
to generate an asynchronous request, is compared with
window.name, suggesting that developers treat window
properties as trusted values that can be safely used in sensitive
operations. Finally, less than 0.4% of the input validation
checks exhibit logical flaws, where the tested condition
always evaluates to true, which could indicate a potential
gap between the semantics of the JavaScript language and
the developers’ comprehension. Also, we examined the input
validation implemented on various data flows within the
same webpage and across different pages of a site, and we
observed at least two distinct types of input validation in
699 pages and 412 sites, respectively, which may suggest
the presence of multiple developers’ implementations and

differences in their approaches to input validation.
Then, we also examine secure patterns that can hinder

request hijacking, both intentionally and unintentionally.
Specifically, out of the ∼3.3M taint flows that Foxhound+

discovered (Cf. Table 3), Sheriff marks only ∼118K of them
as vulnerable, and discards the rest (∼3.2M) due to a variety
of (preventive) program behaviours, e.g., validity checks,
duplicate executions of the same data flow, and re-assignment
of constant values to sources like URL fragment. We used
static analysis to examine more closely the reasons why
these 3.2M requests were not vulnerable, and we grouped
them into seven categories (Cf. Table 10 of §A.3).

In total, Sheriff identified 1,104,104 data flows across
125,738 webpages and 7,021 sites that implement robust
input validation against request hijacking. We found that
overwriting attacker-controlled sources with variable assign-
ments and strict equality / whitelist comparisons are the most
common type of input validation, which prevents request
hijacking, with a total of 653K and 432K instances across
3,935 and 2,824 sites, respectively. Then, contrary to these
intentional checks, we found that other program behaviours
may prevent request hijacking too. For example, the most
frequent reason for the non-vulnerability of a taint flow was
its sole reliance on the domain or path of the webpage to
generate outgoing requests, because modifying the domain
or path of the top-level URL by the attacker would result in
the victim accessing a different webpage altogether.
Content Security Policy (CSP). CSP [25, 26] can limit the
impact of request hijacking when attackers can forge the
URL of requests. In these cases, CSP connect-src direc-
tive [36] can be used to constrain endpoints for asynchronous
requests, EventSource and WebSockets to trusted domains,
preventing sensitive data exfiltration to other domains. We
found that a correct configuration of CSP could mitigate
information leakage and XSS exploitations in 58.7% of the
request hijacking data flows. However, we observed that only
7.6% of the webpages in our dataset deploy a CSP using this
directive, including 1,265 pages with vulnerable data flows.
While CSP can mitigate information leakage, it does not
prevent hijacking requests for CSRF attacks (i.e., same-site
request endpoints, or forging request body).
Cross-Origin Opener Policy (COOP). When attackers use

12

Check Instances Flows Pages Sites

No Check S 95,321 8,876 709

Substring S.indexOf(‘benign.com’) > 0 62,495 3,950 285
Search S.startswith(‘benign.com’) 11,448 821 83

S.includes(‘benign.com’) 2,024 145 32

Not Null typeof S !== ‘undefined’ && S!== null 32,002 2,616 194

Length S && S.length > 0 13,995 1,023 83

Empty String S !== ‘’ 6,179 638 156

Comparison QUERY(Q, S)=== window.name 4,776 445 65
of Forgeable QUERY(Q, S)=== loc.hash.substr(i, j) 556 39 3
Params postMessage(S) === loc.hash.substr(i, j) 102 10 1

URL Fields PATH(S) == ‘index.php’ 1,199 92 10
Check QUERY(Q, S) === ‘benign’ 402 33 5

Faulty if (S === ‘b1.com’ || ‘b2.com’) 130 11 3
Conditionals !! ‘benign.com’ == !! S 629 40 3
(Always S !== undefined + (S === ‘benign.com’) 14 6 1
True) intersection([‘b1.com’, ‘b2.com’], [S]) !== [] 21 5 2

S.length ≤ Math.min() + CONST 5 2 1

Legend: S= Source; QUERY(Q, URL)= query parameter Q in URL
PATH(URL) = URL path.

TABLE 8: Types of input validation checks in vulnerable data flows.

window.open() to open vulnerable target pages in a new
window, COOP [27] can be used to isolate the browsing
context to same-origin documents. For example, if an honest,
cross-origin page with COOP is opened in a new window,
the malicious opening page will not have a reference to
it, preventing attackers to set the window name, or send
postMessages to the new window, which in turn prevents
the forgery of requests generated by these inputs. We found
that about 7% of the request hijacking data flows could
be mitigated by COOP, as they rely on window name,
document referrer and postMessages to provide program
inputs. However, we observed that only ∼1.9% of webpages
in the wild implement COOP, and, strikingly, none of the
webpages exhibiting request hijacking data flows had adopted
this policy, calling for increased awareness about COOP.
Cross-Origin Embedder Policy (COEP). COEP [37] con-
trols embedded cross-origin resources in a webpage. De-
velopers can use the COEP require-corp policy to
restrict fetched resources to either the same origin or a
set of explicitly marked cross-origin resources. As such,
COEP can constrain the fetch() API to trusted domains,
mitigating the impact of 5.3% of the total request hijacks.
We observed that only ∼1% of the webpages in our dataset
use the require-corp policy, including 141 pages with
vulnerable data flows across 32 sites.
Fetch MetaData. These are a series of HTTP request
headers [80, 86] that send additional provenance meta data
about the request, such as the context it originated from.
Websites can use this information to implement policies that
block potentially malicious requests. While Fetch MetaData
headers are automatically included in client-side requests by
JavaScript programs, they can still restrict exploitations. For
example, websites can use the Sec-Fetch-Mode header
with the navigate option to restrict top-level requests
exclusively for page navigation, and block request hijacking
attacks that trigger state changes [10]. We observed that

these headers are present in 67,221 requests across ∼9% of
websites including 85 vulnerable sites.

8. Related Work

Request forgery vulnerabilities have a long history and
have been the the subject of numerous research endeav-
ors in the past, e.g., SSRF [79, 87], CSWSH [49–51],
CSRF [2, 4, 56, 78], and client-side CSRF [12, 13]. Due to
their nefarious consequences, there is a large body of research
dedicated to developing defense mechanisms against them
(e.g., [1, 3, 9, 10, 18–20, 75, 76]). Closely related to our
work, multiple studies considered the hijack of HTML tags
such as scripts [30, 54] and iframes [88]. In contrast to
HTML tags, our study focuses on JavaScript APIs that allow
creating requests. Instead of hijacking requests, previous
research also explored injecting new requests thorough
DOM manipulations and dangling markup injections [89–91].
Other works studied request forgery vulnerability detection
techniques leveraging both manual and (semi-)automated ap-
proaches, e.g., static and dynamic analyses [2, 12], ML-based
solutions [56], and systematic manual inspection [4, 77]. Our
study complements the missing pieces of these works by
extending client-side CSRF (i.e., [12]) and proposing client-
side variants of classical request forgery attacks, quantifying
their prevalence and impact in the wild.

An orthogonal line of related work explored various
program analysis techniques for vulnerability discovery, such
as static analysis [63, 64, 66, 92], dynamic analysis [2, 23, 30–
32], and hybrid approaches [12, 44, 53, 93, 94]. Pertaining
closely to our work, several research efforts studied client-
side input validation flaws [12, 23, 30, 32, 54, 83, 94]. For ex-
ample, Klein et. al. [23] used a combination of dynamic taint
tracking and symbolic string analysis to study the robustness
of custom sanitization functions in the wild. Steffens et. al.
assessed the prevalence of persistent [54] and postMessage-
based [32] XSS. Other works studied the presence of script-
less attacks in JavaScript programs using both static and
dynamic approaches, e.g., DOM Clobbering [44], mutation-
based XSS [95] and script gadgets [31]. Our work aligns
with these efforts by leveraging and combining common
program analysis techniques. However, in contrast to these
works, we focus on developing a custom-tailored detection
technique and tool for client-side request hijacking to study
such vulnerable program behaviors on the Web platform.

9. Discussion and Conclusion

In this section we summarize the main findings of our
study and discuss their wider implications.
Client-side CSRF Only Tip of the Iceberg. In this paper,
we have shown that client-side CSRF is only one facet of
the larger problem of request hijacking in web applications.
In fact, a considerable fraction of request hijacking data
flows that we discovered (36.1%, i.e., 73.3K out of 202K)
as well as more than half of the exploits that we created (Cf.
§6.4) leverage the new vulnerability types and variants which

13

have not been considered by previous works on client-side
CSRF [12–14]. For example, we observed that over 21% of
forgeable data flows affect the sendBeacon API [17].
Request Hijacking Data Flows are Ubiquitous. Request
hijacking data flows are pervasive in today’s web, affecting
over 9.6% of the websites in the wild and about 5.2% of the
tested webpages in our dataset. Our measurement provides
only a lower-bound estimate of the vulnerable data flows as
we limited our tests to 50 unique pages of each website.
Request Hijacking has Diverse Consequences. Our work
uncovers the diverse range of security implications resulting
from client-side request hijacking, where each vulnerability
could be exploited in multiple ways depending on the affected
request type and API, amplifying the associated risks. For
example, we show that the hijack of asynchronous requests
not only results in client-side CSRF, as outlined in previous
research [12], but also exposes the risk of information
leakage, e.g., when attackers gain control over the endpoint
of a request that contains sensitive information in its body.
We observed that over 41% of the exploitable data flows (Cf.
§6.4) could lead to client-side XSS and information leakage,
and 25.3% and 22.4% lead to client-side CSRF and open
redirections, respectively.
Existing Defenses Necessary but Insufficient. The analysis
of existing countermeasures (§7) suggests that they are a
necessary protection mechanism to prevent classical attacks
(e.g., CSRF), but do not provide a complete protective
coverage as each can only mitigate a fraction of the resulting
attacks. For example, CSP does not mitigate over 41% of
the XSS and information leakage exploitations of request
hijacking, and is ineffective against CSRF exploitations,
and COOP cannot prevent ∼93% of the discovered request
hijacking vulnerabilities. In the absence of a full-fledged
browser-level defense, developers have to be particularly
careful when choosing or implementing a countermeasure,
in order to balance security with usability. For example,
over 9.6% of the applications have insufficient, missing or
logically flawed input validation checks when offering their
functionality. Therefore, we believe proper input validation
should be the primary means to defend against these attacks,
e.g., by limiting request API parameters to a predefined
allow-list (i.e., the input is only used to pick one from the
allow-list). One interesting future direction is exploring input
validation mechanisms built into browsers such as the new
Sanitizer API [96].
Open Science. To support the future research effort, we
publicly release Sheriff2 and Foxhound+3, that can be used
to detect and study request hijacking vulnerabilities at scale.
Ethical Considerations. Our experiments on live websites
do not target any real user. Tests requiring state-changing
operations (e.g., changing profile settings) are restricted to
accounts that we created on those sites exclusively, and we
also excluded testing functionalities where we could not
control the request impact (e.g., public comments and posts).

2. https://github.com/SoheilKhodayari/JAW
3. https://github.com/SAP/project-foxhound

Throughout the testing process, we strictly adhered to best
practices and guidelines outlined by websites’ vulnerability
disclosure programs on platforms like HackerOne [97] and
BugCrowd [98], whenever such programs were available.

The vulnerabilities identified in this paper affect 961
websites including 49 sites for which we created exploits.
In June 2023, we initiated the process of notifying the
affected parties, adhering to the best vulnerability disclosure
practices [99, 100]. We prioritized our reports based on their
severity, where we first focused on sites with a known exploit.
We sent an initial notification including a detailed description
of the vulnerability or a proof-of-concept exploit, and follow
up with additional reminders every month to increase the
remediation rate. At the time of writing the paper, we have
notified all of the 49 sites for which we created an exploit at
least once, out of which 37 sites have already confirmed the
issues and 23 sites patched them, such as Microsoft Azure,
Reddit, Forbes, Google DoubleClick, Starz and Indeed. For
the remaining vulnerable data flows, we need to contact 912
sites. In July 2023, we sent the first reports to 62 of them
(11 confirmed so far). To contact the remaining sites, we
seek the assistance of our national CSIRT.

Acknowledgments

This work received funding from the European Union’s
Horizon 2020 research and innovation programme under the
TESTABLE project (grant agreement 101019206).

References
[1] A. Barth, C. Jackson, and J. C. Mitchell, “Robust defenses for

cross-site request forgery,” in ACM CCS, 2008.
[2] G. Pellegrino, M. Johns, S. Koch, M. Backes, and C. Rossow,

“Deemon: Detecting CSRF with dynamic analysis and property
graphs,” in ACM CCS, 2017.

[3] M. Johns and J. Winter, “RequestRodeo: Client side protection against
session riding,” 2006, https://www.owasp.org/images/4/42/RequestR
odeo-MartinJohns.pdf.

[4] A. Sudhodanan, R. Carbone, L. Compagna, and N. Dolgin, “Large-
scale analysis & detection of authentication cross-site request forg-
eries,” in IEEE EuroS&P Symposium, 2017.

[5] J. Burns, “Cross site reference forgery: An introduction to a common
web application weakness,” in Information Security Partners, LLC,
2005.

[6] K. Käfer, “Cross site request forgery,” in Hasso-Plattner-Institut,
Technical report, 2008.

[7] N. Hardy, “The confused deputy: (or why capabilities might have
been invented),” in ACM SIGOPS Operating Systems Review, 1988.

[8] D. Ferguson, “Netflix Cross Site Request Forgery Vulnerability,”
SecList Full Disclosure Mailing List, 2006, https://seclists.org/fulldis
closure/2006/Oct/316.

[9] W. Zeller and E. W. Felten, “Cross-site request forgeries: Exploitation
and prevention,” in Princeton University, 2008.

[10] S. Khodayari and G. Pellegrino, “The state of the samesite: Studying
the usage, effectiveness, and adequacy of samesite cookies,” in IEEE
S&P Symposium, 2022.

[11] (2019) Critical CSRF Vulnerability on Facebook. https://www.ac
unetix.com/blog/web-security-zone/critical-csrf-vulnerability-
facebook/.

[12] S. Khodayari and G. Pellegrino, “JAW: studying Client-side CSRF
with hybrid property graphs and declarative traversals,” in USENIX
Security Symposium, 2021.

[13] (2018) Client-side CSRF. https://www.facebook.com/notes/facebook-
bug-bounty/client-side-csrf/2056804174333798/.

14

https://github.com/SoheilKhodayari/JAW
https://github.com/SAP/project-foxhound
https://www.owasp.org/images/4/42/RequestRodeo-MartinJohns.pdf
https://www.owasp.org/images/4/42/RequestRodeo-MartinJohns.pdf
https://seclists.org/fulldisclosure/2006/Oct/316
https://seclists.org/fulldisclosure/2006/Oct/316
https://www.acunetix.com/blog/web-security-zone/critical-csrf-vulnerability-facebook/
https://www.acunetix.com/blog/web-security-zone/critical-csrf-vulnerability-facebook/
https://www.acunetix.com/blog/web-security-zone/critical-csrf-vulnerability-facebook/
https://www.facebook.com/notes/facebook-bug-bounty/client-side-csrf/2056804174333798/
https://www.facebook.com/notes/facebook-bug-bounty/client-side-csrf/2056804174333798/

[14] OWASP cross-site request forgery prevention cheat sheet. https:
//cheatsheetseries.owasp.org/cheatsheets/Cross-Site Request Forge
ry Prevention Cheat Sheet.html.

[15] XMLHttpRequest API. https://developer.mozilla.org/en-US/docs/We
b/API/XMLHttpRequest.

[16] “Fetch Living Standard,” https://fetch.spec.whatwg.org.
[17] “Beacon, W3C Working Draft,” 2023. [Online]. Available:

https://www.w3.org/TR/beacon/
[18] J. Wilander, “Advanced csrf and stateless anti-csrf,” 2012.
[19] P. D. Ryck, L. Desmet, W. Joosen, and F. Piessens, “Automatic and

precise client-side protection against CSRF attacks,” in ESORICS,
2011.

[20] X. Likaj, S. Khodayari, and G. Pellegrino, “Where we stand (or
fall): An analysis of csrf defenses in web frameworks,” in RAID
Symposium, 2021, pp. 370–385.

[21] Bitnami Application Catalog. https://bitnami.com/stacks.
[22] Project Foxhound. https://github.com/SAP/project-foxhound.
[23] D. Klein, T. Barber, S. Bensalim, B. Stock, and M. Johns, “Hand

Sanitizers in the Wild: A Large-scale Study of Custom JavaScript
Sanitizer Functions,” in IEEE EuroS&P, 2022.

[24] Chrome DevTools Protocol. https://chromedevtools.github.io/devtool
s-protocol/.

[25] M. West, “Content Security Policy Level 3,” W3C Working Draft,
2022, https://w3c.github.io/webappsec-csp/.

[26] L. Weichselbaum, M. Spagnuolo, S. Lekies, and A. Janc, “Csp is
dead, long live csp! on the insecurity of whitelists and the future of
content security policy,” in ACM CCS, 2016, pp. 1376–1387.

[27] Cross-Origin Opener Policy. https://developer.mozilla.org/en-
US/docs/Web/HTTP/Headers/Cross-Origin-Opener-Policy.

[28] J. Schwenk, M. Niemietz, and C. Mainka, “Same-Origin Policy:
Evaluation in Modern Browsers,” in USENIX Security Symposium,
2017.

[29] D. Akhawe, A. Barth, P. E. Lam, J. Mitchell, and D. Song, “Towards
a formal foundation of web security,” in IEEE CSF, 2010.

[30] S. Lekies, B. Stock, and M. Johns, “25 million flows later: large-scale
detection of DOM-based XSS,” in ACM CCS, 2013.

[31] S. Lekies, K. Kotowicz, S. Groß, E. A. Vela Nava, and M. Johns,
“Code-reuse attacks for the web: Breaking cross-site scripting miti-
gations via script gadgets,” in CCS, 2017.

[32] M. Steffens and B. Stock, “PMForce: Systematically Analyzing
postMessage Handlers at Scale,” in CCS, 2020.

[33] window.open() API. https://developer.mozilla.org/en-US/docs/Web/
API/Window/open.

[34] “Cookies: HTTP State Management Mechanism,” 2020. [Online].
Available: https://tools.ietf.org/html/draft-ietf-httpbis-rfc6265bis-05

[35] Cross-Origin Resource Sharing. https://developer.mozilla.org/en-
US/docs/Web/HTTP/CORS.

[36] CSP connect-src Directive. https://developer.mozilla.org/en-US/docs/
Web/HTTP/Headers/Content-Security-Policy/connect-src.

[37] Cross-Origin Embedder Policy. https://developer.mozilla.org/en-
US/docs/Web/HTTP/Headers/Cross-Origin-Embedder-Policy.

[38] “HTML Living Standard,” 2023. [Online]. Available: https:
//html.spec.whatwg.org/

[39] “XMLHttpRequest Living Standard,” https://xhr.spec.whatwg.org/.
[40] “Push API Specification, W3C Working Draft,” 2023. [Online].

Available: https://www.w3.org/TR/push-api/
[41] “WebSockets Living Standard,” 2023. [Online]. Available: https:

//websockets.spec.whatwg.org/
[42] “WHATWG Specifications,” https://spec.whatwg.org/.
[43] “W3C Standards and Drafts,” https://www.w3.org/TR/.
[44] S. Khodayari and G. Pellegrino, “It’s (dom) clobbering time: Attack

techniques, prevalence, and defenses,” in IEEE S&P Symposium,
2023.

[45] “Push API: CSRF on PushManager Subscriptions.” [Online].
Available: https://developer.mozilla.org/en-US/docs/Web/API/Push
API

[46] K. Subramani, J. Jueckstock, A. Kapravelos, and R. Perdisci, “Sok:
Workerounds-categorizing service worker attacks and mitigations,”
in IEEE EuroS&P Symposium, 2022.

[47] T. Watanabe, E. Shioji, M. Akiyama, and T. Mori, “Melting pot of
origins: Compromising the intermediary web services that rehost

websites.” in NDSS Symposium, 2020.
[48] I. Hickson, “Server-sent Events,” in W3C Working Draft, 2012.

[Online]. Available: https://www.w3.org/TR/2012/WD-eventsource-
20120426/

[49] C. Schneider, “Cross-Site WebSocket Hijacking (CSWSH),” 2019.
[Online]. Available: https://christian-schneider.net/CrossSiteWebSo
cketHijacking.html

[50] “Cross-Site WebSocket Hijacking.” [Online]. Available: https://portsw
igger.net/web-security/websockets/cross-site-websocket-hijacking

[51] W. Mei and Z. Long, “Research and Defense of Cross-Site WebSocket
Hijacking Vulnerability,” in IEEE International Conference on
Artificial Intelligence and Computer Applications (ICAICA), 2020.

[52] P. Murley, Z. Ma, J. Mason, M. Bailey, and A. Kharraz,
“WebSocket Adoption and the Landscape of the Real-Time
Web,” in WWW Web Conference, 2021. [Online]. Available:
https://doi.org/10.1145/3442381.3450063

[53] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and
G. Vigna, “Cross site scripting prevention with dynamic data tainting
and static analysis,” in NDSS Symposium, 2007.

[54] M. Steffens, C. Rossow, M. Johns, and B. Stock, “Don’t trust the
locals: Investigating the prevalence of persistent client-side cross-site
scripting in the wild.” in NDSS, 2019.

[55] “Exposure of Sensitive Information to Unauthorized Actors in
EventSource,” 2022. [Online]. Available: https://huntr.dev/bounties/d
c9e467f-be5d-4945-867d-1044d27e9b8e/

[56] S. Calzavara, M. Conti, R. Focardi, A. Rabitti, and G. Tolomei,
“Mitch: A machine learning approach to the black-box detection of
csrf vulnerabilities,” in IEEE EuroS&P Symposium, 2019.

[57] The WebSocket API. [Online]. Available: https://developer.mozilla.
org/en-US/docs/Web/API/WebSockets API

[58] V. Le Pochat, T. Van Goethem, S. Tajalizadehkhoob, M. Korczyński,
and W. Joosen, “Tranco: A research-oriented top sites ranking
hardened against manipulation,” in NDSS Symposium, 2019.

[59] Playwright browser automation framework. https://playwright.dev/.
[60] Firefox developer tools. https://firefox-dev.tools/.
[61] S. Pletinckx, K. Borgolte, and T. Fiebig, “Out of Sight, Out of Mind:

Detecting Orphaned Web Pages at Internet-Scale,” in ACM CCS,
2021.

[62] M. Henzinger, “Finding near-duplicate web pages: a large-scale
evaluation of algorithms,” in ACM SIGIR conference on Research
and development in information retrieval, 2006.

[63] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, “Modeling and
Discovering Vulnerabilities with Code Property Graphs,” in IEEE
S&P Symposium, 2014.

[64] M. Backes, K. Rieck, M. Skoruppa, B. Stock, and F. Yamaguchi,
“Efficient and Flexible Discovery of PHP Application Vulnerabilities,”
in IEEE EuroS&P Symposium, 2017.

[65] Neo4j. https://neo4j.com/.
[66] T. Brito, P. Lopes, N. Santos, and J. F. Santos, “Wasmati: An efficient

static vulnerability scanner for WebAssembly,” Computers & Security,
2022.

[67] S. Guarnieri and B. Livshits, “GULFSTREAM: Staged Static Analy-
sis For Streaming JavaScript Applications,” in Proceedings of the
USENIX conference on Web application development, 2010.

[68] S. H. Jensen, P. A. Jonsson, and A. Møller, “Remedying the Eval
that Men Do,” in ACM ISSTA, 2012.

[69] K. Gallaba, A. Mesbah, and I. Beschastnikh, “Dont́ Call Us, Weĺl
Call You: Characterizing Callbacks in Javascript,” in Proceedings
of the ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, 2015.

[70] M. Madsen, B. Livshits, and M. Fanning, “Practical Static Analysis
of Javascript Applications in the Presence of Frameworks and
Libraries,” in Proceedings of the ACM Joint European Software
Engineering Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE), 2013.

[71] S. H. Jensen, M. Madsen, and A. Møller, “Modeling the HTML DOM
and Browser API in Static Analysis of Javascript Web Applications,”
in Proceedings of the 19th ACM SIGSOFT symposium and the
13th European conference on Foundations of software engineering
(ESEC/FSE), 2011.

[72] setTimeout global function. https://developer.mozilla.org/en-US/doc

15

https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
https://fetch.spec.whatwg.org
https://www.w3.org/TR/beacon/
https://bitnami.com/stacks
https://github.com/SAP/project-foxhound
https://chromedevtools.github.io/devtools-protocol/
https://chromedevtools.github.io/devtools-protocol/
https://w3c.github.io/webappsec-csp/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cross-Origin-Opener-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cross-Origin-Opener-Policy
https://developer.mozilla.org/en-US/docs/Web/API/Window/open
https://developer.mozilla.org/en-US/docs/Web/API/Window/open
https://tools.ietf.org/html/draft-ietf-httpbis-rfc6265bis-05
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/connect-src
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/connect-src
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cross-Origin-Embedder-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cross-Origin-Embedder-Policy
https://html.spec.whatwg.org/
https://html.spec.whatwg.org/
https://xhr.spec.whatwg.org/
https://www.w3.org/TR/push-api/
https://websockets.spec.whatwg.org/
https://websockets.spec.whatwg.org/
https://spec.whatwg.org/
https://www.w3.org/TR/
https://developer.mozilla.org/en-US/docs/Web/API/Push_API
https://developer.mozilla.org/en-US/docs/Web/API/Push_API
https://www.w3.org/TR/2012/WD-eventsource-20120426/
https://www.w3.org/TR/2012/WD-eventsource-20120426/
https://christian-schneider.net/CrossSiteWebSocketHijacking.html
https://christian-schneider.net/CrossSiteWebSocketHijacking.html
https://portswigger.net/web-security/websockets/cross-site-websocket-hijacking
https://portswigger.net/web-security/websockets/cross-site-websocket-hijacking
https://doi.org/10.1145/3442381.3450063
https://huntr.dev/bounties/dc9e467f-be5d-4945-867d-1044d27e9b8e/
https://huntr.dev/bounties/dc9e467f-be5d-4945-867d-1044d27e9b8e/
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://playwright.dev/
https://firefox-dev.tools/
https://neo4j.com/
https://developer.mozilla.org/en-US/docs/Web/API/setTimeout

s/Web/API/setTimeout.
[73] Ineo: neo4j instance and version manager. https://github.com/cohes

ivestack/ineo.
[74] window.name API. https://developer.mozilla.org/en-US/docs/Web/

API/Window/name.
[75] S. Lekies, W. Tighzert, and M. Johns, “Towards stateless, client-side

driven cross-site request forgery protection for web applications,”
SAP Research, 2012.

[76] A. Czeskis, A. Moshchuk, T. Kohno, and H. J. Wang, “Lightweight
server support for browser-based CSRF protection,” in WWW Web
Conference, 2013.

[77] H. Shahriar and M. Zulkernine, “Client-side detection of cross-
site request forgery attacks,” in Proceedings of the IEEE 21st
International Symposium on Software Reliability Engineering, 2010.

[78] E. Shernan, H. Carter, D. Tian, P. Traynor, and K. Butler, “More
guidelines than rules: Csrf vulnerabilities from noncompliant oauth
2.0 implementations,” in DIMVA, 2015.

[79] B. Jabiyev, O. Mirzaei, A. Kharraz, and E. Kirda, “Preventing server-
side request forgery attacks,” in Proceedings of the 36th Annual
ACM Symposium on Applied Computing, 2021, pp. 1626–1635.

[80] A. Sudhodanan, S. Khodayari, and J. Caballero, “Cross-origin state
inference (COSI) attacks: Leaking web site states through xs-leaks,”
in NDSS Symposium, 2020.

[81] W3C Standards and Drafts. https://www.w3.org/TR/.
[82] M. Alkhalaf, T. Bultan, and J. L. Gallegos, “Verifying client-side

input validation functions using string analysis,” in ICSE, 2012.
[83] M. Weissbacher, W. Robertson, E. Kirda, C. Kruegel, and G. Vigna,

“ZigZag: Automatically Hardening Web Applications Against Client-
side Validation Vulnerabilities,” in USENIX Security Symposium,
2015.

[84] F. Kerschbaum, “Simple cross-site attack prevention,” in IEEE
SecureComm, 2007.

[85] M. Balduzzi, C. T. Gimenez, D. Balzarotti, and E. Kirda, “Automated
discovery of parameter pollution vulnerabilities in web applications.”
in NDSS Symposium, 2011.

[86] Fetch MetaData Sec-Fetch-Dest Header. https://developer.mozilla.or
g/en-US/docs/Web/HTTP/Headers/Sec-Fetch-Dest.

[87] G. Pellegrino, O. Catakoglu, D. Balzarotti, and C. Rossow, “Uses
and abuses of server-side requests,” in RAID Symposium, 2016.

[88] G. Rydstedt, E. Bursztein, D. Boneh, and C. Jackson, “Busting frame
busting: a study of clickjacking vulnerabilities at popular sites,” IEEE
S&P Symposium, 2010.

[89] M. Heiderich, C. Späth, and J. Schwenk, “DOMPurify: Client-side
protection against xss and markup injection,” in ESORICS, 2017.

[90] F. Hantke and B. Stock, “HTML violations and where to find them:
a longitudinal analysis of specification violations in HTML,” in ACM
Internet Measurement Conference, 2022.

[91] Dangling markup injection. https://portswigger.net/web-security/cro
ss-site-scripting/dangling-markup.

[92] F. Al Kassar, G. Clerici, L. Compagna, F. Yamaguchi, and
D. Balzarotti, “Testability tarpits: the impact of code patterns on the
security testing of web applications,” 2022.

[93] A. Alhuzali, R. Gjomemo, B. Eshete, and V. Venkatakrishnan,
“NAVEX: Precise and scalable exploit generation for dynamic web
applications,” in USENIX Security Symposium, 2018.

[94] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song,
“A symbolic execution framework for JavaScript,” in IEEE S&P
Symposium, 2010, pp. 513–528.

[95] M. Heiderich, J. Schwenk, T. Frosch, J. Magazinius, and E. Z. Yang,
“mXSS Attacks: Attacking Well-secured Web Applications by Using
innerHTML Mutations,” in CCS, 2013.

[96] F. Braun, M. Heiderich, and D. Vogelheim, “HTML Sanitizer API,”
W3C Draft Community Group Report, 2023, https://wicg.github.io/s
anitizer-api/.

[97] Hackerone. https://hackerone.com.
[98] Bugcrowd. https://www.bugcrowd.com.
[99] B. Stock, G. Pellegrino, C. Rossow, M. Johns, and M. Backes, “Hey,

you have a problem: On the feasibility of large-scale web vulnerability
notification,” in USENIX Security Symposium, 2016.

[100] F. Li, Z. Durumeric, J. Czyz, M. Karami, M. Bailey, D. McCoy,
S. Savage, and V. Paxson, “You’ve got vulnerability: Exploring

Listing 2: Example client-side request hijacking vulnerability derived from
bbc.com, which is not captured by JAW’s static analysis engine [12].

1 var c = {}, i = 0;
2 // handle incoming postMessages
3 window.addEventListener("message", h);
4 function h(e){
5 if(e.origin.indexOf("bbc.com") > -1){
6 i = i + 1;
7 // [...]
8 var d = JSON.stringify({
9 "csrf_token": "xyz-token",

10 "state": {...},
11 });
12 var u = e.data + '/userinfo';
13 c["r" + i] = new
14 Function("httpPostRequest("+ u + "," + d + ")");
15 }
16 }
17 function httpPostRequest(url, body){
18 // [...]
19 navigator.sendBeacon(url, body)
20 }
21 // remember state upon closing the session
22 window.addEventListener("visibilitychange", saveState);
23 function saveState(e) {
24 if (document.visibilityState === "hidden") {
25 for(let j=1; j<= i; j++){
26 c["r" + j]();
27 }
28 }}

effective vulnerability notifications,” in USENIX Security Symposium,
2016.

[101] JavaScript Function() constructor. https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global Objects/Function/Functi
on.

Appendix A.

A.1. TA-HPG Construction and Analysis

In this section, we exemplify the TA-HPG construction
and analysis approach presented in Sections 5.2.2 and 5.3
through an example of a real vulnerability derived from
bbc.com (Cf. §A.2), highlighting the need for dynamic
information provided by Foxhound+.
Motivating Example. Listing 2 shows a real example
of client-side request hijacking vulnerability derived from
bbc.com, where the program uses attacker-controlled inputs
to specify the endpoint to which an asynchronous HTTP
POST request is sent to. In more detail, the code first
listens for incoming postMessages (line 3), and then uses the
message data to construct a URL (lines 4-12). Afterwards,
it creates a closure function using the new Function()
API [101] by generating a string of the target function call
dynamically (lines 13-14). The string contains an invoca-
tion of the httpPostRequest function in line 17, with
parameters being the constructed URL of line 12 (attacker-
controlled), and sensitive data of line 8 (i.e., CSRF tokens).
Subsequently, it stores the closure function as a property
of the global object c (line 13). Finally, upon closing the
session (line 22), the program uses dynamic property lookups
to retreive the closure function stored in object c and invokes
it (line 26), which in turn sends an HTTP POST request
(line 19) to the attacker-controlled endpoint.

16

https://developer.mozilla.org/en-US/docs/Web/API/setTimeout
https://github.com/cohesivestack/ineo
https://github.com/cohesivestack/ineo
https://developer.mozilla.org/en-US/docs/Web/API/Window/name
https://developer.mozilla.org/en-US/docs/Web/API/Window/name
https://www.w3.org/TR/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Sec-Fetch-Dest
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Sec-Fetch-Dest
https://portswigger.net/web-security/cross-site-scripting/dangling-markup
https://portswigger.net/web-security/cross-site-scripting/dangling-markup
https://wicg.github.io/sanitizer-api/
https://wicg.github.io/sanitizer-api/
https://hackerone.com
https://www.bugcrowd.com
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/Function

Figure 3: Excerpt of the TA-HPG for the example in Listing 2. Connections highlighted in orange and red represent missing PDG and call graph edges that
are reconstructed using dynamic taint flows of Foxhound+, which are necessary for vulnerability discovery (steps 1-5). Blue and yellow diamonds attached
to nodes represent source and sink semantic types propagated through the TA-HPG. For brevity, not all nodes and edges are shown.

TA-HPG Construction and Traversals. The dynamic
JavaScript language features used in Listing 2 present
significant challenges for static analysis-based approaches
like JAW [12] to capture the aforementioned request hijacking
vulnerability. For example, JAW cannot identify the invoked
function and its corresponding arguments in line 26. This is
due to dynamic property reads/writes on lines 13 and 26, as
well as dynamic code generation using new Function()
on line 14, which makes it difficult to create a comprehensive
representation of the program.

Figure 3 presents the TA-HPG that Sheriff generates for
the code in Listing 2, which alleviates the missing HPG edges
due to the dynamic function calls. In particular, Sheriff uses
dynamic taintflows provided by Foxhound+ to add (i) a call
edge between the call expression node in line 26 and the
function declaration node in line 17, and (ii) PDG data
dependency edges from assignment expression in line 13
to call expression node in line 26 for call arguments u and
d. Accordingly, a TA-HPG traversal can now start from
the source node in L12, pass through L13, L26, and L17
nodes, and finally reach the sink instruction, who picks up
the attacker-controlled values.

A.2. Case Studies

In this section, we present a few manually vetted case
studies of the confirmed attacks, which were patched fol-
lowing our vulnerability disclosure. In §2, we presented the
request hijacking vulnerability we discovered in Microsoft
Azure. In this section, we present additional case studies
based on coverage of various attack types and popularity of
the affected parties.
Indeed. We found that the JavaScript code reads the value of
a query parameter r through location.search API, and
use it as the path of an asynchronous POST request endpoint

without proper validation. Attackers could leverage this
behaviour to forge arbitrary requests toward state-changing
server-side endpoints. For example, we created a client-side
CSRF exploit that enables attackers to modify the details of
user job applications or withdraw it without their knowledge.
Reddit. We found that Reddit relies on URL parameters to
construct the endpoint of a push subscription request. The
request body contained information that the application needs
to send a push message such as a push endpoint and the
encryption key, which is security-sensitive. Attackers can
steal this information by hijacking the push subscription
request (through manipulation of URL parameters) and
diverging it to the domain they control. Consequently, the
leaked endpoint and encryption key can be abused to send
malicious messages to the victim’s browser.
Starz. We discovered that the endpoint of a client-side
redirect request originates from window.name, which is
attacker-controlled. The JavaScript program generated this
request via window.open() API and employed the current
window as the browsing target. This allows attackers to
hijack and exploit the request with javascript URIs and
transform the redirection to client-side XSS, which in turn
enables the hijack of session id and compromise of user
accounts.
Forbes. This is a news websites that uses server-sent events
(SSE) for updating the user’s news feed. Unfortunately, it was
possible for attackers to manipulate the EventSource URL
and forward it to a malicious domain they control, because
the JavaScript program used a query parameter value as the
EventSource URL with little-to-no input validation checks.
This enabled attackers to obtain SSE hijacking and send
malicious events to user’s browsers.
BBC. We found that the endpoint of an asynchronous POST
request originates from a broadcasted postMessage, which

17

attackers can control. As such, attackers can manipulate the
request endpoint and set it to a domain they control, enabling
them to steal the CSRF token that is included in the request
body by the JavaScript prorgram. Subsequently, the leaked
token can be used to perform CSRF attacks. For example,
we created an exploit to modify user notification settings.
JustWatch. We discovered that the JavaScript program
retrives the value of the URL hash fragment and use it
as the endpoint of a WebSocket, which is used to perform
the initial handshake for socket connection. Attackers can
redirect this request to a malicious domain they control,
resulting in leakage of messages communicated by the user.
Yoox. This is a shopping cart application that employs push
notifications as a means to promote clothing products. How-
ever, we identified a vulnerability affecting this functionality
wherein the endpoint of push subscription requests can be
manipulated through URL parameters. This manipulation
grants attackers the ability to launch DoS attacks on push
notifications by changing the subscription endpoint to an
invalid value. Fortunately, affected users can mitigate the
DoS and regain access to the intended functionality by
resetting the browser notification permissions, which restores
the proper operation of the push notification system.
TP-Link. We found a client-side request whose endpoint
originated from a query parameter named url, which affects
the TP-link page preview functionality. The program retrieves
the parameter value and then redirects the webpage URL
to the read value. As this request is top-level, the hijacked
request could be exploited to acheive client-side XSS by
abusing javascript URIs, as the JavaScript program does
not perform proper input validation.

A.3. Additional Evaluation Details

K Vulnerability C
SP

C
O

O
P

C
O

E
P

C
O

R
S

Sa
m

eS
ite

C
oo

ki
es

In
pu

t
Va

lid
at

io
n

C
SR

F
To

ke
ns

O
ri

gi
n

H
ea

de
r

Fe
tc

h
M

et
aD

at
a

¶ Forge. Async Req. URL
¶ Forge. Async Req. Body
¶ Forge. Async Req. Header

¶ Forge. Push Req. URL

¶ Forge. EventSource URL

¶ Forge. WebSocket URL
¶ Forge. WebSocket Body

Forge. Location URL

¶ Forge. Window Open URL

Legend: = Effective; = Partially Effective; = Not Effective.

TABLE 9: Protective coverage of existing defenses over different client-side
request hijacking variants. Defenses with partial effectiveness mitigate only
manipulation of specific APIs, or certain exploitations of the vulnerability.

Property Instances Flows Pages Sites

Infeasible Source Manipu. SP is URL domain 1,152,266 116,441 3,249
SP is URL path 911,897 95,269 2,657

Reassignment to Source SP = constant 627,460 68,251 3,358
SP : fragment string replace 21,709 3,067 1,502
SP : fragment object assign 4,092 666 434

Whitelist / Equality Check SP === constant 367,024 49,089 2,294
SP : postMessage origin check 40,185 7,634 965
SP includes a set of constants 15,032 2,541 367
arrayConstants.includes(SP) 10,022 899 610

Duplicate Function Calls SP flow executed ≥1 times 8,743 1,228 202

Length Check Length(SP) === 1 3,560 1,155 501

Type Check typeof SP === ”number” 12,121 2,001 1,328
typeof SP === ”boolean” 1,667 1,001 542
SP instanceof Date 789 300 91
SP is JSON && valid(SP) 443 235 55

Benign Control / Taint SP taints request fragment only 97,528 17,802 1,029
SP taints request scheme only 44,209 10,512 836

Legend: SP= Source Parameter.

TABLE 10: Summary of program behaviours that can eliminate unique
client-side request hijacking vulnerabilities.

Figure 4: Example of request fields as in Table 5.

� Category ý JavaScript Sink

Request Hijacking E navigator.sendBeacon(T1, T2)
[12, 17, 33, 40, 44, 48, 51] fetch(T1, T2)

XMLHttpRequest.open(T)
xhr.send(T)
xhr.setRequestHeader(T1, T2)

E new WebSocket(T)
E socket.send(T)
E new EventSource(T)
E PushManager.subscribe(T)

window.open(T)
location.href = T
location.replace(T)
location.assign(T)

Code Execution eval(T)
[23, 30, 54, 94] new Function(T)

setInterval(T)
setTimeout(T)
script.text = T
script.src = T
script.innerHTML = T

Markup Injection document.write(T)
[31, 44, 95] document.writeln(T)

elm.innerHTML = T
elm.outerHTML = T
elm.insertAdjacentHTML(T)
elm.insertAdjacentText(T)

State Manipulation document.cookie = T
[44, 54] localStorage.setItem(T)

sessionStorage.setItem(T)

PostMessage Spoofing postMessage(T)
[32]

Legend: Ti= Tainted Variable.

TABLE 11: Summary of primitive JavaScript sinks supported by Sheriff.
Rows marked with E show APIs for which we implemented extra
instrumentation in Foxhound+.

18

Appendix B.
Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

B.1. Summary

Starting from a review of browser APIs and Web specifi-
cations, the paper presents a systematization of client-side
request hijacking vulnerabilities. It identifies 10 distinct vul-
nerability variants, including seven new ones, and discusses
their security implications. The paper introduces Sheriff, a
tool that combines static analysis with dynamic taint tracking
to detect vulnerable data flows from attacker-controllable
inputs to request-sending instructions. The paper evaluates
Sheriff on the Tranco top 10K sites and constructs proof-
of-concept exploits across several sites. Finally, the paper
evaluates the adoption and efficacy of existing countermea-
sures against client-side request hijacking attacks.

B.2. Scientific Contributions

• Creates a New Tool to Enable Future Science
• Identifies an Impactful Vulnerability
• Provides a Valuable Step Forward in an Established

Field

B.3. Reasons for Acceptance

1) The Sheriff tool presented in this paper extends and
improves upon existing tools, and will be made publicly
available to enable future research.

2) The review of browser API capabilities and Web speci-
fications, and the systematization of request hijacking
vulnerabilities provides a valuable framework for rea-
soning about such vulnerabilities, and sheds light on
vulnerabilities that have been overlooked in the past. It
also supports the development of tools like Sheriff.

3) The analysis of the Tranco top 10K sites provides
useful insights into the prevalence of request hijacking
vulnerabilities. The review of the adoption and efficacy
of existing countermeasures motivates the need for
further work in this area.

19

	Introduction
	Client-side Request Hijacking
	Vulnerability Description
	Threat Model

	Problem Statement
	API Capabilities and Attack Systematization
	Browser API Capabilities
	Systematization of Request Hijacking Attacks
	Asynchronous Requests
	Push Requests
	Server-Sent Events
	Web Sockets
	Top-Level Navigation Requests
	Window Navigation Requests

	Request API Prevalence

	Vulnerability Detection
	Data Collection
	Data Modeling
	Preprocessing
	Model Building

	Vulnerability Analysis
	Vulnerability Verification

	Empirical Evaluation
	Data Collection and Processing
	Prevalence in the Wild
	Anatomy of Hijacked Requests
	Exploitations

	Defenses
	Related Work
	Discussion and Conclusion
	Appendix A
	TA-HPG Construction and Analysis
	Case Studies
	Additional Evaluation Details

	Appendix B: Meta-Review
	Summary
	Scientific Contributions
	Reasons for Acceptance

