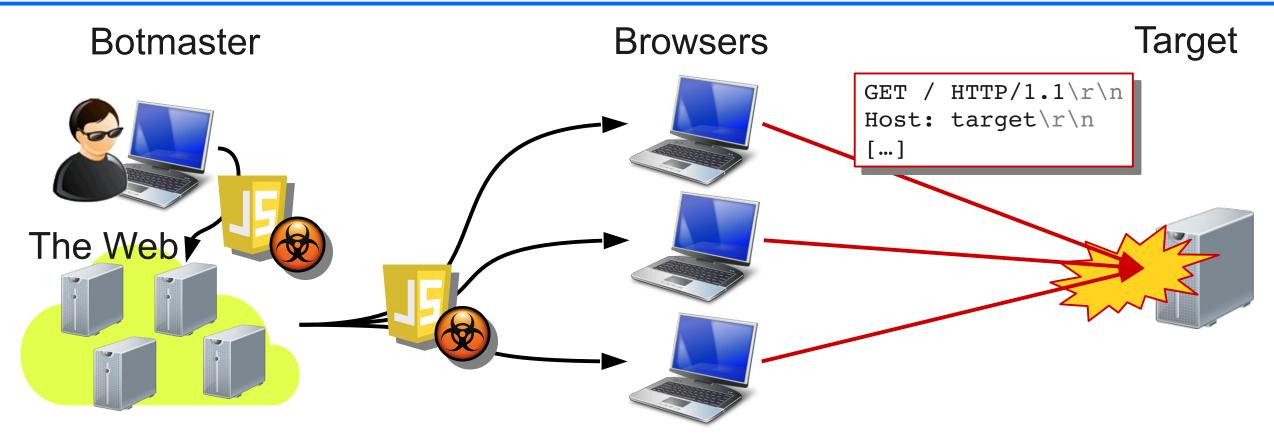
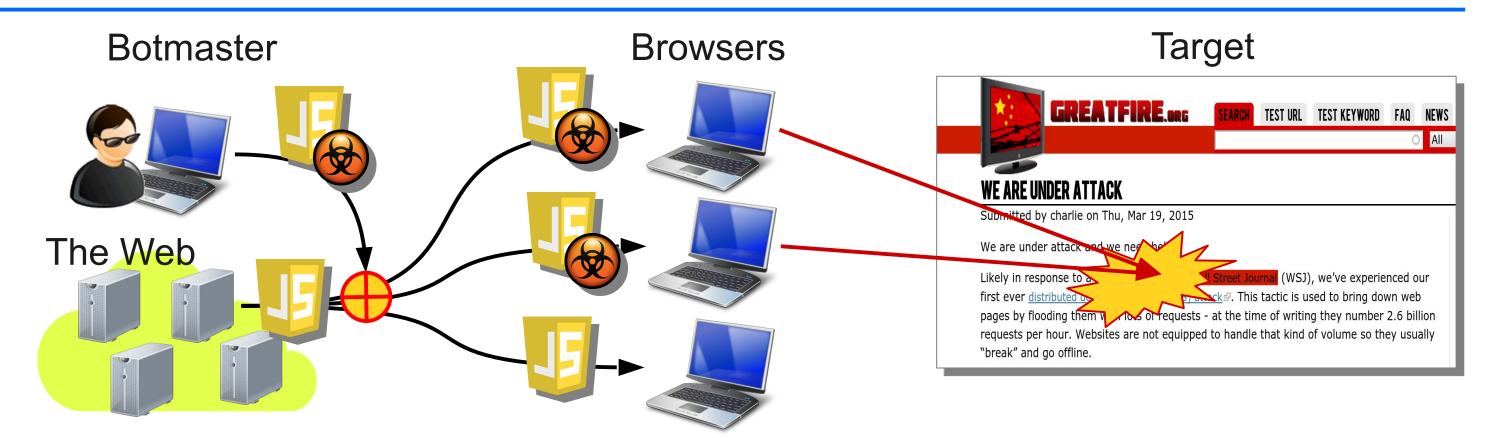

Cashing out the Great Cannon? On Browser-based DDoS Attacks and Economics

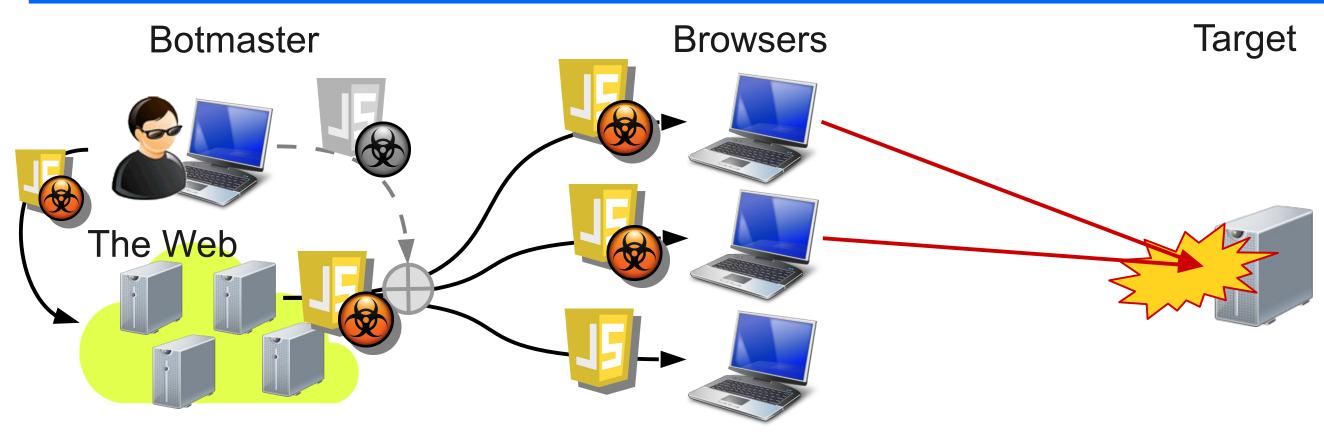
G. Pellegrino⁽¹⁾, C. Rossow⁽¹⁾, F. J. Ryba⁽²⁾, T. C. Schmidt⁽³⁾, M. Wählisch⁽²⁾


(1)CISPA / MMCI, Saarland University
(2)Freie Universität Berlin
(3)HAW Hamburg

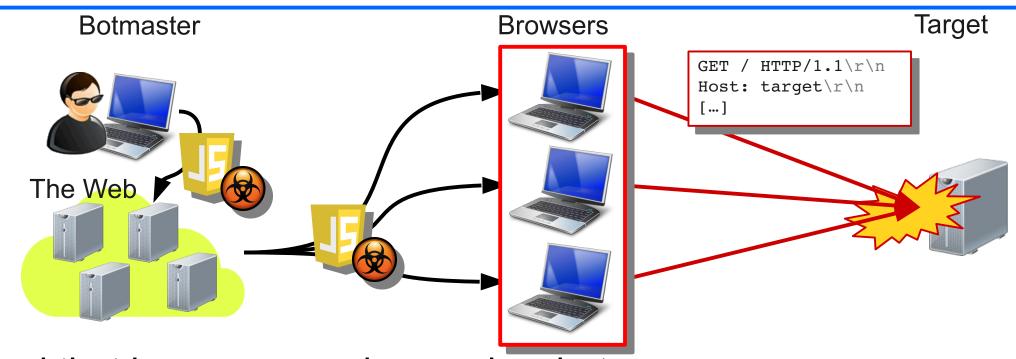
Classical DDoS Botnets


- DDoS is a severe threat to the Internet
- In classical DDoS botnets:
 - Infection-based recruitment (Drive-by download, Browser vulns, ...)
 - Architecture-dependent malware

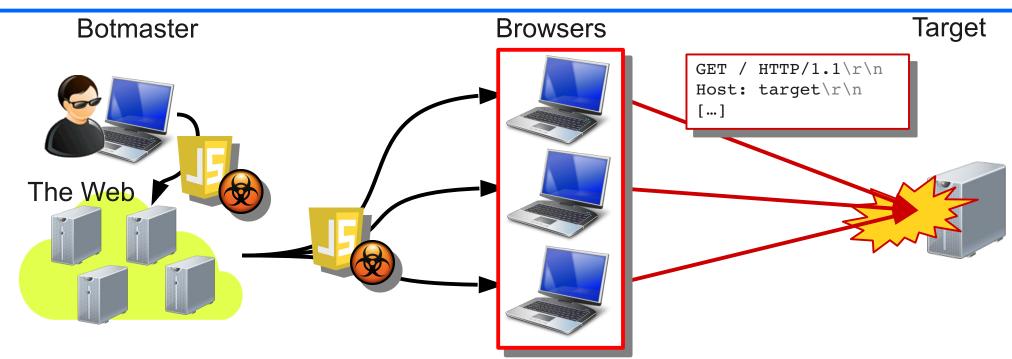
Browser-based DDoS Botnet

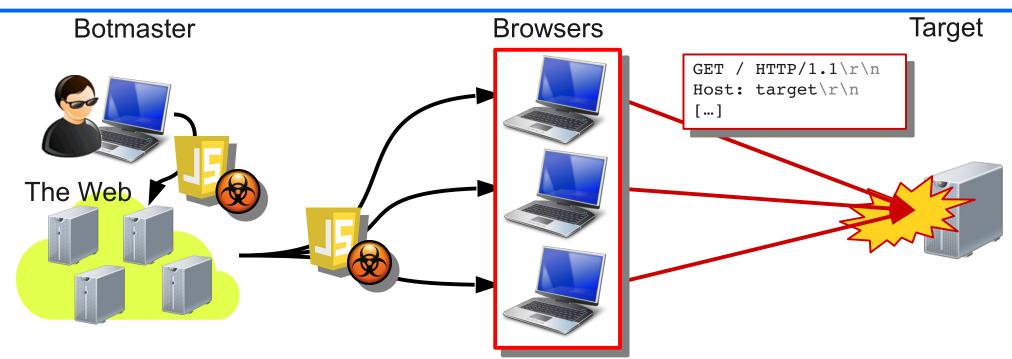

- Browser-based botnet a new type of botnet
 - Infectionless bots recruitment
 - Architecture-independent malware (e.g., OSX, Windows, Linux, Android)

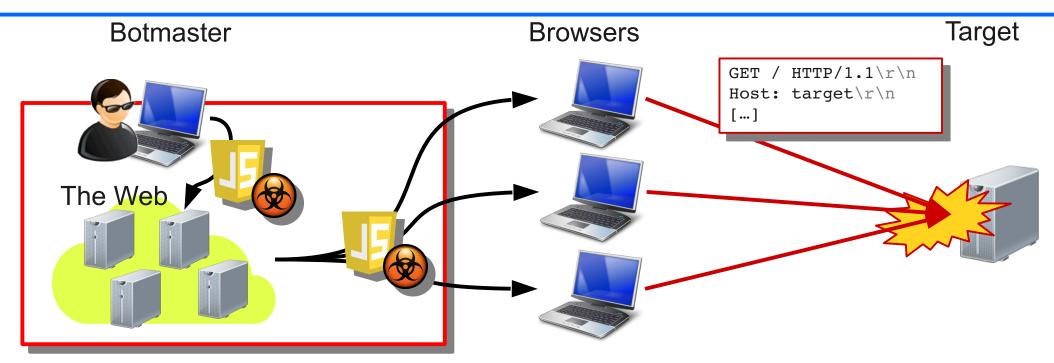
The Great Cannon

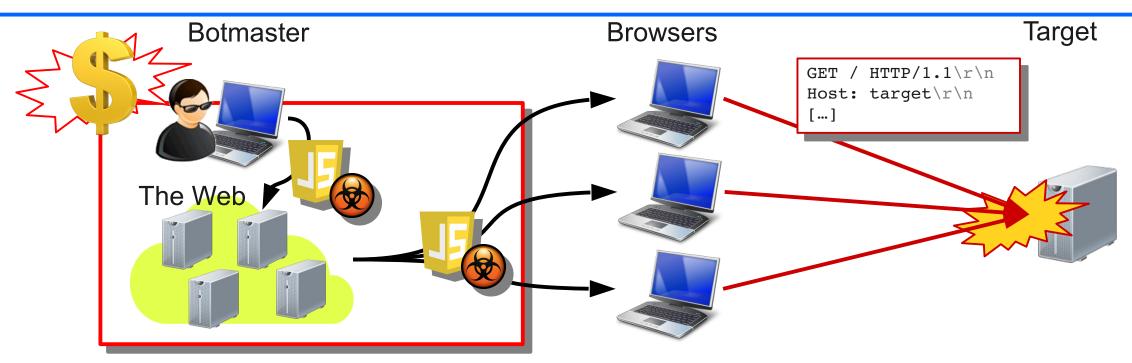


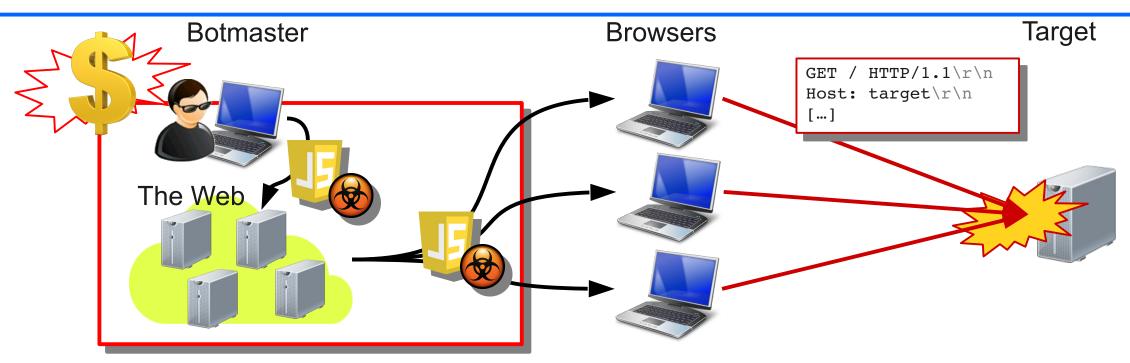
- In March 2015 first browser-based DDoS attacks [CitizenLab]
- Recruitment: <u>Powerful attacker</u> injects JS into HTTP conversations
 - We envision also less powerful attacker can launch similar attacks


Threat Model


- No control of the network, e.g., no ISP
- Infiltrate JS over the Web, e.g., as advertisement [Grossman]
- Economic incentives


GC showed that browsers can be used as bots


- GC showed that browsers can be used as bots
 - However, anecdotal knowledge only [Kuppan, Grossman]


- GC showed that browsers can be used as bots
 - However, anecdotal knowledge only [Kuppan, Grossman]
- → To date, no systematic understanding of browser features to support DDoSes

Promising for <u>less powerful attackers</u>, i.e., criminals with economic incentives

- Promising for <u>less powerful attackers</u>, i.e., criminals with economic incentives
 - However, little is known about recruitment techniques and costs

- Promising for <u>less powerful attackers</u>, i.e., criminals with economic incentives
 - However, little is known about recruitment techniques and costs
- → Hard to assess if criminals will jump on the wagon of GC-like attacks

Contents

Review browser features

Browser features in DoS attacks

Cost estimation and comparison

Browser Features

Classical DDoS bots: Yoddos/DirtJumper

- Supports different DDoS attacks
 - TCP, UDP, and HTTP based flooding
- And attack variants:
 - HTTP reqs. with no recv()
 - Via TCP FIN or RST
 - HTTP custom Host and Referer
 - Bypass filters

Yoddos Attack Commands (Source [Welzel])

Cmd ID	Functionality	Target
0x0000001	UDP with raw socket. rand() spoofed IPs	host/IP
0x00000002	Same as 0x00000001	host/IP
0x00000004	Same as 0x00000001, single thread	host/IP
0x00000008	UDP with raw socket. Spoofed IPs	host/IP
0x0000010	Same as 0x00000008	host/IP
0x00000020	TCP msgs with \%d<<< <i@c<<<<\\%s!< td=""><td>host/IP</td></i@c<<<<\\%s!<>	host/IP
0x00000040	UDP with rnd data and msg lengths	host/IP
0800000080	TCP with rnd data and msg lengths	host/IP
0x00000100	UDP with rnd data but structured message	host/IP
0x00000200	TCP with rnd length for each message	host/IP
0x00000400	connect() 200 sockets (only once)	host/IP
0x00000800	connect() 200 sockets (continuously)	host/IP
0x00001000	HTTP, Host and Referer fixed, no recv()	URL
0x00002000	HTTP, path is /, no recv(), no Referer	host/IP
0x00004000	HTTP, no recv(), varies path to fetch	URL
0x00008000	HTTP, InternetOpenA()	URL
0x00010000	Custom UDP/TCP data from C&C server	host/IP

Web Browsers as DDoS bots

- Offer communication APIs
 - e.g., XMLHttpRequest, WebSocket, and Server-Sent Events
- Other DoS-enabling JS APIs
 - Image and WebWorker APIs
- However, less flexible
 - No direct access to TCP/UDP
 - restricted to extensions...
 - No IP spoofing
- Reviewed 4 APIs ...

Yoddos Attack Commands (Source [Welzel])

Cmd	ID	Functionality	Target
0x0000	00001	UDP with raw socket. rand() spoofed IPs	host/IP
0x0000	00002	Same as 0x00000001	host/IP
0x0000	00004	Same as 0x00000001, single thread	host/IP
0x0000	80000	UDP with raw socket. Spoofed IPs	host/IP
0x0000	00010	Same as 0x00000008	host/IP
0x0000	00020	TCP msgs with \%d<<< <i@c<<<<\\%s!< td=""><td>host/IP</td></i@c<<<<\\%s!<>	host/IP
0x0000	00040	UDP with rnd data and msg lengths	host/IP
0x0000	08000	TCP with rnd data and msg lengths	host/IP
0x0000	00100	UDP with rnd data but structured message	host/IP
0x0000	0200	TCP with rnd length for each message	host/IP
0x0000	00400	connect() 200 sockets (only once)	host/IP
0x0000	00800	connect() 200 sockets (continuously)	host/IP
0x0000	1000	HTTP, Host and Referer fixed, no recv()	URL
0x0000	2000	HTTP, path is /, no recv(), no Referer	host/IP
0x0000	4000	HTTP, no recv(), varies path to fetch	URL
0x0000	00080	HTTP, InternetOpenA()	URL
0x0001	0000	Custom UDP/TCP data from C&C server	host/IP

XMLHttpRequest API (1/4)

- Send HTTP requests to arbitrary targets
- Restrictions:
 - → SOP and CORS, but HTTP requests are sent anyway

```
var target = "http://target/";
var xhr = new XMLHttpRequest();
xhr.open("GET", target);
xhr.send();
Send HTTP
request
```

Yoddos Attack Commands (Source [Welzel])

```
Connect ( 200 Bockets (Continuously)
                                                          11000/11
             HTTP, Host and Referer fixed, no recv()
                                                         URL
0x00001000
             HTTP, path is /, no recv(), no Referer
                                                         host/IP
0x00002000
             HTTP, no recv(), varies path to fetch
                                                         URL
0x00004000
             HTTP, InternetOpenA()
                                                         URL
0x000080000
             Contain IIDD/TCD Jata from CO-C
                                                          hand ID
```

XMLHttpRequest API (2/4)

- Send HTTP requests to arbitrary targets
- Restrictions:
 - → SOP and CORS, but HTTP requests are sent anyway

```
var target = "http://target/";
var xhr = new XMLHttpRequest();
xhr.open("GET", target);
xhr.send();
Send HTTP
request
```

Yoddos Attack Commands (Source [Welzel])

OAOOOOOO	Comicco (200 Boches (Constituousiy)	11050/11
0x00001000	HTTP, Host and Referer fixed, no recv()	URL
0x00002000	HTTP, path is /, no recv(), no Referer	host/IP
0x00004000	HTTP, no recv(), varies path to fetch	URL
0x00008000	HTTP, InternetOpenA()	URL
000040000	Creations IIIDD/TCD Jate from CV-C common	book/ID

XMLHttpRequest API (3/4)

- Send HTTP requests to arbitrary targets
- Restrictions:
 - → SOP and CORS, but HTTP requests are sent anyway
- Additional behaviors:
 - → Partial control over the TCP socket life-cycle → no rcvd()

```
var target = "http://target/";
var xhr = new XMLHttpRequest();
xhr.open("GET", target);

setTimeout(function() {
    xhr.abort();
}, 10);

xhr.send();
```

Yoddos Attack Commands (Source [Welzel])

OAOOOOOO	connect(, 200 bockets (continuously)	11050/11
0x00001000	HTTP, Host and Referer fixed, no recv()	URL
0x00002000	HTTP, path is /, no recv(), no Referer	host/IP
0x00004000	HTTP, no recv(), varies path to fetch	URL
0x00008000	HTTP, InternetOpenA()	URL
000010000	Creations HDD/TCD Jote from CV-C com-con	book /ID

XMLHttpRequest API (4/4)

- Send HTTP requests to arbitrary targets
- Restrictions:
 - → SOP and CORS, but HTTP requests are sent anyway
- Additional behaviors:
 - → Partial control over the TCP socket life-cycle → no rcvd()
 - Set/modify request headers
 - Except for Host and Referer (and others)

```
var target = "http://target/";
var xhr = new XMLHttpRequest();
xhr.open("GET", target);

setTimeout(function() {
    xhr.abort();
}, 10);

xhr.send();
```

Yoddos Attack Commands (Source [Welzel])

ONOUUUUU	connect() 200 bockets (continuously)	11050/11
0x00001000	HTTP, Host and Referer fixed, no recv()	URL
0x00002000	HTTP, path is /, no recv(), no Referer	host/IP
0x00004000	HTTP, no recv(), varies path to fetch	URL
0x00008000	HTTP, InternetOpenA()	URL
000010000	Creations HDD/TCD Jate from CV-C com-con	book /ID

Web Sockets (1/2)

- Extension of HTTP
 - Establish full-duplex stream-oriented client-server communication channel via the WebSocket Handshake protocol
 - Based on a HTTP request/response pair

Yoddos Attack Commands (Source [Welzel])

ONOUGOOG	connect() 200 bockets (continuously)	11050/11
0x00001000	HTTP, Host and Referer fixed, no recv()	URL
0x00002000	HTTP, path is /, no recv(), no Referer	host/IP
0x00004000	HTTP, no recv(), varies path to fetch	URL
0x00008000	HTTP, InternetOpenA()	URL
000010000	Creations HDD/TCD data from CV-C common	book /ID

Web Sockets (2/2)

- Extension of HTTP
 - Establish full-duplex stream-oriented client-server communication channel via the WebSocket Handshake protocol
 - Based on a HTTP request/response pair
- Additional behaviors:
 - Partial control over the TCP socket life-cycle → no rcvd()
 - No access to request headers

Yoddos Attack Commands (Source [Welzel])

connect() 200 sockets (continuously)	11050/11
HETER II I D.C. C. I ()	IIDI
iii ii, iiost and itelefel lixed, no recv()	OILL
HTTD mode is / manner() me Defense	hast ID
iii ii, patii is /, no recover, no recicier	11000/11
HTTP no recy() varies nath to fetch	URL
11111, no recv(), varies path to leten	OILL
HTTP Internet(nenA()	HRI.
III II, Internetopena()	CILL
Contain UDD/TCD data from CV-C correct	haat /ID
	HTTP, Host and Referer fixed, no recv() HTTP, path is /, no recv(), no Referer HTTP, no recv(), varies path to fetch HTTP, InternetOpenA()

API Evaluation

Aggressiveness

API	Browser	AVG Reqs/s	MAX Reqs/s
XMLHttpReq.	Chrome	1,005	1,886
	Firefox	2,165	2,892
WebSocket	Chrome	34	73
	Firefox	0	0
Server-Sent Evts	Chrome	210	941
	Firefox	258	1,907
Image	Chrome	84	109
	Firefox	751	1,916

- Firefox shows a more aggressive behavior
- 18x faster than prior tests: ~170 XHR reqs/s [Kuppan]

Aggressiveness

API	Browser	AVG Reqs/s	WAX Reqs/s
XMLHttpReq.	Chrome	1,005	1,886
	Firefox	2,165	2,892
WebSocket	Chrome	34	73
	Firefox	0	0
Server-Sent Evts	Chrome	210	941
	Firefox	258	1,907
Image	Chrome	84	109
	Firefox	751	1,916

Browser	Workers	AVG Reqs/s
Chrome	0	1,359
_	2	966
	3	689
Firefox _	0	1,456
•	2	2,424
	3	2,616

Firefox shows a more aggressive behavior

18x faster than prior tests: ~170 XHR reqs/s [Kuppan]

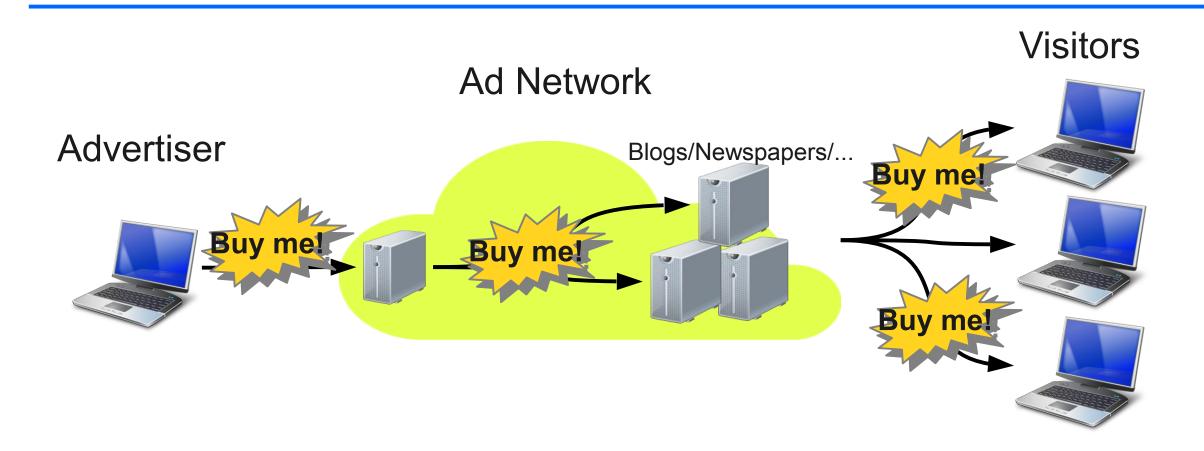
Aggressiveness

API	Browser	AVG Reqs/s	WAX Reqs/s
XMLHttpReq.	Chrome	1,005	1,886
	Firefox	2,165	2,892
WebSocket	Chrome	34	73
	Firefox	0	0
Server-Sent Evts	Chrome	210	941
	Firefox	258	1,907
Image	Chrome	84	109
	Firefox	751	1,916

Browser	Workers	AVG Reqs/s
Chrome	0	1,359
	2	966
	3	689
Firefox _	0	1,456
•	2	2,424
	3	2,616

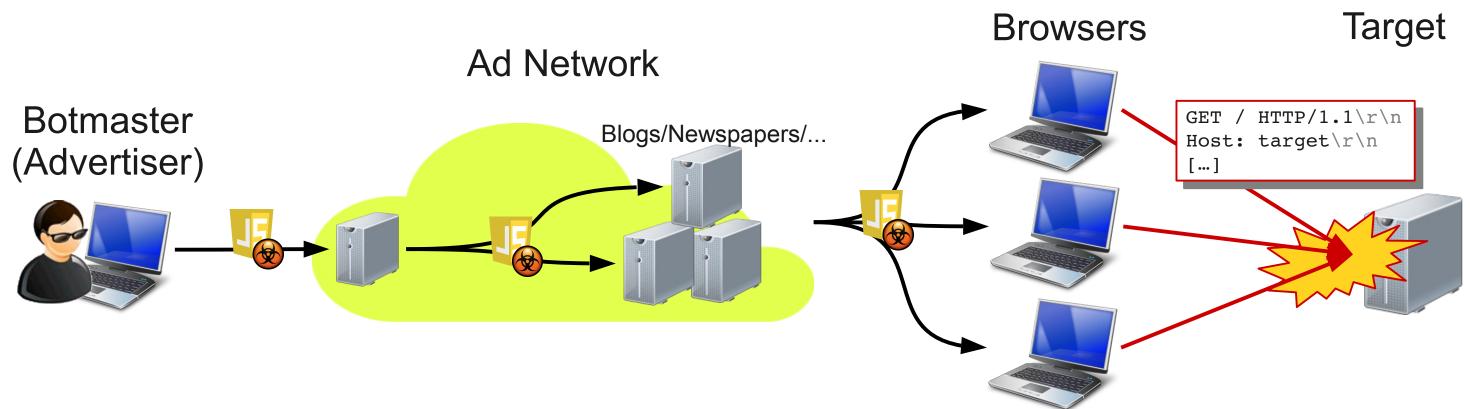
Firefox shows a more aggressive behavior

18x faster than prior tests: ~170 XHR reqs/s [Kuppan]

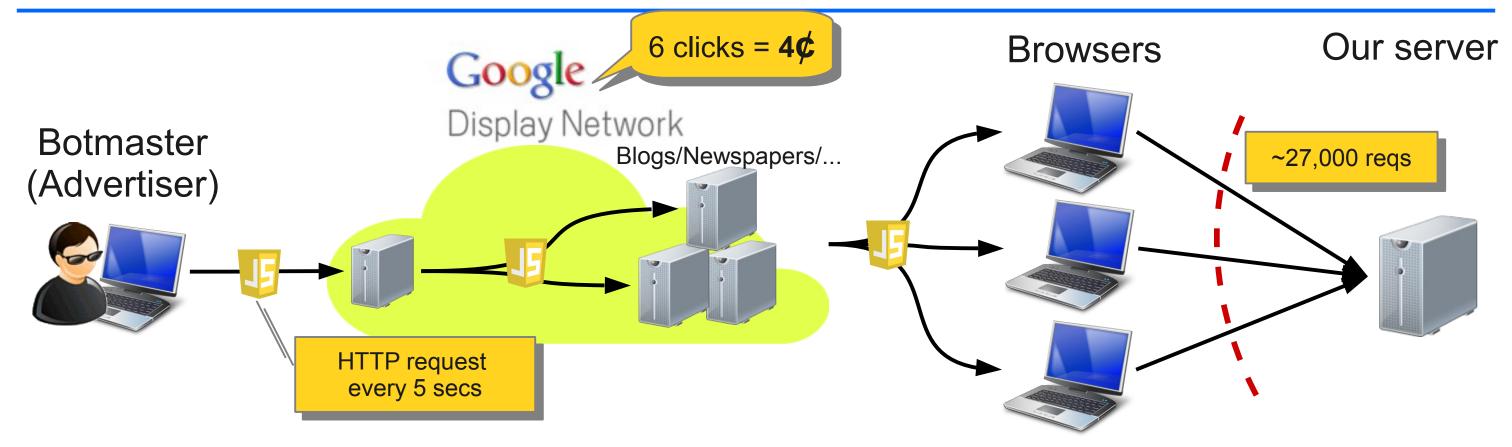

→ ~3,000 reqs/s is a severe threat

Bot Recruitment and Cost Estimation

Recruitment Technique


- Cost depends on the recruitment technique
- Techniques
 - 1. Ad networks
 - Malicious JS as advertisment
 - 2. Typosquatting
 - Registration of domain misspellings
 - 3. Machine-generated visits
 - 4. Web application hijacking
 - Using vulns to spread malicious JS, e.g., Stored XSS

Ad Networks


- Advertiser uploads Ad into an Ad Network
- Ad Network distributes Ads to Publishers then to Visitors

Ad Networks

- Botmaster uploads malicious JS
- Ad Network distributes malicious JS
- Attack launched by displaying the Ad

Ad Networks: Cost Estimation

- Google Display Network (May 10-17, 2015)
- Ad: ping our servers every 5 seconds
- Cost per day: 2.4¢

Ad Networks vs Classical botnets

- Estimation as combination of prior studies (i.e., [Caballero, Rossow])
- Pay-per-Install: malware installation from \$6 to \$140 for 1000 infections [Caballero]
 - 0.6¢ and 14¢ per bot
- Zeus infiltration 2013: Bots stay up in ~20 days and online for ~11h a day [Rossow]
 - Cumulative online time 10 days
- Cost per day between 0.06¢ and 1.4¢ (vs. 2.4¢ of browser-based botnet)

Conclusion

Conclusion

- Systematically reviewed browser features for DDoS attacks
 - Interesting firepower w/ variety of behaviors
 - However, less flexibility wrt. classical bots
 - New rich set of APIs in the near future

- Estimated costs of browser- vs classical botnets
 - slightly higher

Limitations and Future work

- Cost: PPI vs 1 Ad Network
 - Use larger dataset and other Ad Networks
 - Explore other recruitment techniques, e.g., Typosquatting
 - Reduce the cost, e.g., less attractive ads
- Delay between Ad upload and view
 - Bot control/usability, e.g., C&C servers and responsiveness
- Botnet size less predictable
 - Study properties and influence

Takeaway

- Browser-based DDoS botnets are a severe threat
- Costs are comparable, however less flexibility
- We do ongoing research on this topic

References

[CitizenLab] "China's Great Cannon", B. Marczak, N. Weaver, J. Dalek, R. Ensafi, D. Fifield, S. McKune, A. Rey, J. Scott-Railton, R. Deibert, V. Paxson. url: https://citizenlab.org/2015/04/chinas-great-cannon/

[Kuppan] "Attacking with HTML5", L. Kuppan, Presentation at Black Hat USA 2010

[Grossmann] "Million Browser Botnet", J. Grossmann and M. Johansen, Presentation at Black Hat USA 2013

[Akhawe] "Towards a Formal Foundation of Web Security", D. Akhawe, A. Barth, P. E. Lam, J. Mitchell, D. Song, CSF'10

[Caballero] "The Commoditization of Malware Distribution", J. Caballero, C. Grier, C. Kreibich, and V. Paxson, Usenix Security Symposioum 2011

[Rossow] "P2PWNED: Modeling and Evaluating the Resilience of Peer-to-Peer Botnets", C. Rossow, D. Andriesse, T. Werner, B. Stone-Gross, D. Plohmann, C.J. Dietrich, H. Bos, IEEE S&P 2013

[Welzel] "On Measuring the Impact of DDoS Botnets", A. Welzel, C. Rossow, H. Bos, EuroSec'14