Cashing out the Great Cannon?
On Browser-based DDoS Attacks and Economics

G. Pellegrino', C. Rossow!”, F. J. Ryba®, T. C. Schmidt®, M. Wahlisch®

MCISPA / MMCI, Saarland University
@Freie Universitat Berlin
®HAW Hamburg

Classical DDoS Botnets

Botmaster Infected hosts Target

GET / HTTP/1l.1l\r\n
Host: target\r\n

[-]

C&C server

HTTP flood

- DDOS is a severe threat to the Internet
= |n classical DDoS botnets:
* |nfection-based recruitment (Drive-by download, Browser vulns, ...)
* Architecture-dependent malware

August 14, 2015

Browser-based DDoS Botnet

Botmaster Browsers Target

GET / HTTP/1l.1l\r\n
Host: target\r\n

[-]

3T

= Browser-based botnet a new type of botnet

* Infectionless bots recruitment
 Architecture-independent malware (e.g., OSX, Windows, Linux, Android)

August 14, 2015

The Great Cannon

Botmaster Browsers Target

N, . N ER I FIRE s TESTURL TESTKEYWORD FAQ NES

-
WE ARE UNDER ATTACK

ii{ed by charlie on Thu, Mar 19, 2015

We are under attac

Likely in response to (WSJ), we've experienced our
first ever distribute ke, This tactic is used to bring down web
pages by flooding them orrequests - at the time of writing they number 2.6 billion
requests per hour. Websites are not equipped to handle that kind of volume so they usually
“break” and go offline.

T

= |n March 2015 first browser-based DDoS attacks [CitizenLab]

= Recruitment: Powerful attacker injects JS into HT TP conversations

2> We envision also less powerful attacker can launch similar attacks

August 14, 2015 4

Threat Model

Botmaster Browsers Target

= No control of the network, e.g., no ISP
= |nfiltrate JS over the Web, e.g., as advertisement [Grossman]

= Economic incentives

August 14, 2015

Toward a Great Cannon for Cyber-Criminals?

Botmaster Browsers Target

o
The Web) h

= GC showed that browsers can be used as bots

August 14, 2015

Toward a Great Cannon for Cyber-Criminals?

Botmaster

¥,
The Web)~ ._h

14

Browsers Target

GET / HTTP/1.1\r\n
Host: target\r\n
[..]

= GC showed that browsers can be used as bots

* However, anecdotal knowledge only [Kuppan, Grossman]

August 14, 2015

Toward a Great Cannon for Cyber-Criminals?

Botmaster Browsers Target

GET / HTTP/1.1\r\n
Host: target\r\n
[..]

= GC showed that browsers can be used as bots
* However, anecdotal knowledge only [Kuppan, Grossman]

=» To date, no systematic understanding of browser features to support DDoSes

August 14, 2015

Toward a Great Cannon for Cyber-Criminals?

Botmaster Browsers Target

-

GET / HTTP/1.1\r\n
Host: target\r\n
[..]

= Promising for less powerful attackers, i.e., criminals with economic incentives

August 14, 2015

Toward a Great Cannon for Cyber-Criminals?

Botmaster Browsers Target
- GET / HTTP/1.1\r\n
Host: target\r\n

= Promising for less powerful attackers, i.e., criminals with economic incentives

« However, little is known about recruitment techniques and costs

August 14, 2015

10

Toward a Great Cannon for Cyber-Criminals?

ter Browsers Target

GET / HTTP/1.1\r\n
Host: target\r\n

= Promising for less powerful attackers, i.e., criminals with economic incentives
* However, little is known about recruitment techniques and costs

=» Hard to assess if criminals will jump on the wagon of GC-like attacks

August 14, 2015

11

Contents

= Review browser features
= Browser features in DoS attacks

= Cost estimation and comparison

August 14, 2015

12

Browser Features

August 14, 2015

13

Classical DDoS bots: Yoddos/DirtdJumper

= Supports different DDoS attacks
« TCP, UDP, and HTTP based flooding

= And attack variants:
« HTTP regs. with no recv ()

* Via TCP FIN or RST
« HTTP custom Host and Referer

» Bypass filters

Yoddos Attack Commands (Source [Welzel])

Cmd ID Functionality Target
0x00000001 | UDP with raw socket. rand() spoofed IPs host /IP
0x00000002 | Same as 0x00000001 host /IP
0x00000004 | Same as 0x00000001, single thread host /IP
0x00000008 | UDP with raw socket. Spoofed IPs host /IP
0x00000010 | Same as 0x00000008 host /TP
0x00000020 | TCP msgs with \/d<<<<<I@C<<<<<\}s! host /IP
0x00000040 | UDP with rnd data and msg lengths host /IP
0x00000080 | TCP with rnd data and msg lengths host /IP
0x00000100 | UDP with rnd data but structured message host/IP
0x00000200 | TCP with rnd length for each message host /IP
0x00000400 | connect() 200 sockets (only once) host /IP
0x00000800 | comnect() 200 sockets (continuously) host /IP
0x00001000 | HTTP, Host and Referer fixed, no recv() URL
0x00002000 | HTTP, path is /, no recv(), no Referer host /IP
0x00004000 | HTTP, no recv(), varies path to fetch URL
0x00008000 | HTTP, InternetOpenA() URL

0x00010000

Custom UDP/TCP data from C&C server

August 14, 2015

14

Web Browsers as DDoS bots

= Offer communication APlIs
* e.g., XMLHttpRequest, WebSocket,

Yoddos Attack Commands (Source [Welzel])

and Server-Sent Events

= QOther DoS-enabling JS APIs
* |Image and WebWorker APls

= However, less flexible

* No direct access to TCP/UDP

restricted to extensions...

* No IP spoofing

= Reviewed 4 APls ...

Cmd ID Functionality Target
0x00000001 | UDP with raw socket. rand() spoofed IPs host /IP
0x00000002 | Same as 0x00000001 host /IP
0x00000004 | Same as 0x00000001, single thread host /IP
0x00000008 | UDP with raw socket. Spoofed IPs host /IP
0x00000010 | Same as 0x00000008 host /TP
0x00000020 | TCP msgs with \/d<<<<<I@C<<<<<\Ys! host /TP
0x00000040 | UDP with rnd data and msg lengths host /IP
0x00000080 | TCP with rnd data and msg lengths host /IP
0x00000100 | UDP with rnd data but structured message host/IP
0x00000200 | TCP with rnd length for each message host /IP
0x00000400 | connect() 200 sockets (only once) host /IP
0x00000800 | connect () 200 sockets (continuously) host /1P
0x00001000 | HTTP, Host and Referer fixed, no recv() URL
0x00002000 | HTTP, path is /, no recv(), no Referer host /IP
0x00004000 | HTTP, no recv(), varies path to fetch URL
0x00008000 | HTTP, InternetOpenA() URL

0x00010000

Custom UDP/TCP data from C&C server

August 14, 2015

15

XMLHttpRequest API (1/4)

= Send HTTP requests to arbitrary targets

= Restrictions:

> SOP and CORS, but HTTP requests are sent

anyway

0x00001000
0x00002000
0x00004000
0x00008000

var target = "http://target/";
var xhr = new XMLHttpRequest();

xhr.open("GET", target);
xhr.send(); —

Send HTTP
request

Yoddos Attack Commands (Source [Welzel])

HTTP, Host and Referer fixed, no recv() URL
HTTP, path is /, no recv(), no Referer host /IP
HTTP, no recv(), varies path to fetch URL
HTTP, InternetOpenA() URL

August 14, 2015

16

XMLHttpRequest API (2/4)

= Send HTTP requests to arbitrary targets

= Restrictions:

> SOP and CORS, but HTTP requests are sent

anyway

var target = "http://target/";
var xhr = new XMLHttpRequest();

xhr.open("GET", target);
xhr.send(); —

Send HTTP
request

Yoddos Attack Commands (Source [Welzel])

0x00001000 | HTTP, Host and Referer fixed, no recv() URL
0x00002000 | HTTP, path is /, no recv(), no Referer host /IP
0x00004000 HTTP, no recv(). varies path to fetch URL
|0x00008{}00 HTTP, InternetOpenA() URL

August 14, 2015

17

XMLHttpRequest API (3/4)

= Send HTTP requests to arbitrary targets var target = "http://target/";

T _ var xhr = new XMLHttpRequest();

> SOP and CORS, but HTTP requests are sent

anywa setTimeout (function() { RST
ad xhr.abort(); after 10 ms
= Additional behaviors: }r 10);

> Partial control over the TCP socket xhr.send();
life-cycle — no rcvd ()

Yoddos Attack Commands (Source [Welzel])

0x00001000 | HTTP, Host and Referer fixed, no recv() URL
0x00002000 | H'I'I'P, path 1s /, no recv(), no Referer host /1P
0x00004000 | HTTP, no recv(), varies path to fetch URL
0x00008000 | HTTP, InternetOpenA() URL

August 14, 2015 18

XMLHttpRequest APl (4/4)

= Send HTTP requests to arbitrary targets

= Restrictions:

> SOP and CORS, but HTTP requests are sent
anyway

= Additional behaviors:

> Partial control over the TCP socket
life-cycle — no rcvd ()

« Set/modify request headers

» Except for Host and Referer (and FESPOR

var target = "http://target/";
var XxXhr = new XMLHttpRequest();
xhr.open("GET", target);

{ RST

setTimeout (function()
after 10 ms

xhr.abort();
}o 10);

xhr.send();

nls nhm -
.}] L - .} L} ¥ - L
[] - []

N has - 3 -

others)

0x00004000
0x00008000

HTTP, no recv(), varies path to fetch
HTTP, InternetOpenA()

August 14, 2015

19

Web Sockets (1/2)

= Extension of HTTP

» Establish full-duplex stream-oriented client-server
communication channel via the WebSocket
Handshake protocol

> Based on a HTTP request/response pair

var target = "ws://target/";
var ws = new WebSocket(target);

WebSocket Handshake

Yoddos Attack Commands (Source [Welzel])

0x00001000 | HTTP, Host and Referer fixed, no recv() URL
0x00002000 | HTTP, path is /, no recv(), no Referer host /IP
0x00004000 | HTTP. no recv(), varies path to fetch URL
|0x00008{}00 HTTP, InternetOpenA() URL

August 14, 2015

20

Web Sockets (2/2)

= Extension of HTTP

» Establish full-duplex stream-oriented client-server
communication channel via the WebSocket

Handshake protocol

> Based on a HTTP request/response pair

= Additional behaviors:

> Partial control over the TCP socket
life-cycle — no rcvd ()

* No access to request headers

var target = "ws://target/";

RST
after 10ms

setTimeout (function
ws.close();

}, 10);

var ws = new WebSocket(target);

[T [
0]) - - .} -

0x00008000

HTTP, no recv(), varies path to fetch URL

HTTP, InternetOpenA() URL

AT T aTa T WaTaYa¥a

August 14, 2015

21

API| Evaluation

August 14, 2015

22

Aggressiveness

API Browser AVG Reqs/s MAX Reqs/s
XMLHttpReq. Chrome 1,005 1,886
Firefox 2,165 2,892
WebSocket Chrome 34 73
Firefox 0 0
Server-Sent Evts Chrome 210 941
Firefox 258 1,907
Image Chrome 84 109
Firefox 751 1,916

= Firefox shows a more aggressive behavior
= 18x faster than prior tests: ~170 XHR reqs/s [Kuppan]

August 14, 2015

Aggressiveness

Browser

Workers

AVG Reqs/s

Chrome ‘

1,359
966
689

Firefox f

W NN O W N O

1,456
2,424
2,616

API Browser AVG eqs/s
XMLHttpReq. Chrome 1,005 1,886
Firefox 2,165 2,892
WebSocket e 34 73
Firefox 0 0
Server-Sent Evts Chrome 210 941
Firefox 258 1,907
Image Chrome 84 109
Firefox 751 1,916

= Firefox shows a more aggressive behavior

= 18x faster than prior tests: ~170 XHR reqs/s [Kuppan]

August 14, 2015

24

Aggressiveness

Browser

Workers

AVG Reqs/s

Chrome ‘

1,359
966
689

Firefox f

W NN O W N O

1,456
2,424
2,616

API Browser AVG eqs/s
XMLHttpReq. Chrome 1,005 1,886
Firefox 2,165 2,892
WebSocket e 34 73
Firefox 0 0
Server-Sent Evts Chrome 210 941
Firefox 258 1,907
Image Chrome 84 109
Firefox 751 1,916

= Firefox shows a more aggressive behavior

= 18x faster than prior tests: ~170 XHR reqs/s [Kuppan]

> ~3,000 reqgs/s is a severe threat

August 14, 2015

25

Bot Recruitment and
Cost Estimation

ust 14, 2015

Recruitment Technique

= Cost depends on the recruitment technique

= Techniques
1. Ad networks

» Malicious JS as advertisment
2. Typosquatting

» Registration of domain misspellings
3. Machine-generated visits
4. Web application hijacking

 Using vulns to spread malicious JS, e.g., Stored XSS

August 14, 2015

27

Ad Networks

Visitors
Ad Network

Advertiser Blogs/Newspapers/... _

= Advertiser uploads Ad into an Ad Network
= Ad Network distributes Ads to Publishers then to Visitors

August 14, 2015

28

Ad Networks

Ad Network

Botmaster
(Advertiser)

= Botmaster uploads malicious JS
= Ad Network distributes malicious JS
= Attack launched by displaying the Ad

Browsers

Target

GET / HTTP/1l.1\r\n
Host: target\r\n

[...]

HEEEE

August 14, 2015

29

Ad Networks: Cost Estimation

J 6 clicks = 4¢ I Browsers Our server
Goc ngf’:‘ o

Display Network /

Botmaster Blogs/Newspapers/... ‘ ~27,000 regs I

(Advertiser)

HTTP request
every 5 secs

= Google Display Network (May 10-17, 2015)
= Ad: ping our servers every 5 seconds
= Cost per day: 2.4¢

August 14, 2015 30

Ad Networks vs Classical botnets

= Estimation as combination of prior studies (i.e., [Caballero, Rossow])

= Pay-per-Install: malware installation from $6 to $140 for 1000 infections [Caballero]
* 0.6¢ and 14¢ per bot

= Zeus Infiltration 2013: Bots stay up in ~20 days and online for ~11h a day [Rossow]

2> Cumulative online time 10 days

= Cost per day between 0.06¢ and 1.4¢ (vs. 2.4¢ of browser-based botnet)

August 14, 2015

31

Conclusion

August 14, 2015

32

Conclusion

= Systematically reviewed browser features for DDoS attacks

* Interesting firepower w/ variety of behaviors
* However, less flexibility wrt. classical bots
* New rich set of APIs in the near future

= Estimated costs of browser- vs classical botnets
* slightly higher

August 14, 2015

33

Limitations and Future work

= Cost: PPl vs 1 Ad Network

* Use larger dataset and other Ad Networks
» Explore other recruitment techniques, e.g., Typosquatting
» Reduce the cost, e.g., less attractive ads

= Delay between Ad upload and view

» Bot control/usability, e.g., C&C servers and responsiveness

= Botnet size less predictable

» Study properties and influence

August 14, 2015

34

Takeaway

= Browser-based DDoS botnets are a severe threat
= Costs are comparable, however less flexibility
= We do ongoing research on this topic

August 14, 2015

35

References

[CitizenLab] “China’s Great Cannon”, B. Marczak, N. Weaver, J. Dalek, R. Ensafi, D. Fifield, S. McKune, A. Rey, J.
Scott-Railton, R. Deibert, V. Paxson. url: https://citizenlab.org/2015/04/chinas-great-cannon/

‘Kuppan] “Attacking with HTMLS5”, L. Kuppan, Presentation at Black Hat USA 2010
Grossmann] “Million Browser Botnet’, J. Grossmann and M. Johansen, Presentation at Black Hat USA 2013

Akhawe] “Towards a Formal Foundation of Web Security”, D. Akhawe, A. Barth, P. E. Lam, J. Mitchell, D. Song,
CSF'10

(Caballero] “The Commoditization of Malware Distribution”, J. Caballero, C. Grier, C. Kreibich, and V. Paxson,
Usenix Security Symposioum 2011

[Rossow] “P2PWNED: Modeling and Evaluating the Resilience of Peer-to-Peer Botnets”, C. Rossow, D.
Andriesse, T. Werner, B. Stone-Gross, D. Plohmann, C.J. Dietrich, H. Bos, IEEE S&P 2013

[Welzel] “On Measuring the Impact of DDoS Botnets”, A. Welzel, C. Rossow, H. Bos, EuroSec'14

August 14, 2015 36

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

